Effect of Guanine Nucleotides on Dopaminergic Agonist and Antagonist Affinity for [3H]Sulpiride Binding Sites in Rat Striatal Membrane Preparations

1982 ◽  
Vol 37 (3) ◽  
pp. 608-612 ◽  
Author(s):  
S. B. Freedman ◽  
Judith A. Poat ◽  
G. N. Woodruff
1988 ◽  
Vol 66 (12) ◽  
pp. 1258-1264
Author(s):  
Patrick J. McIlroy

The effect of various salts on the binding of human choriogonadotropin to rat luteal membranes has been examined. Increasing salt concentrations had biphasic effects, initially increasing binding, then decreasing it. With NaCl, these effects were on both the affinity and the number of receptor sites. The affinity increased with increasing NaCl concentrations, to a maximum at 40 mM, and then decreased. Above 40 mM NaCl, the number of binding sites increased. NaCl also altered the effects of Mg2+ and guanyl nucleotides. At low ionic strength, Mg2+ was necessary to observe binding. Guanine nucleotides modulated this binding by decreasing the affinity. At 40 mM NaCl, Mg2+ increased receptor number without altering affinity. Guanyl nucleotides modulated this binding by reducing the number of sites to that observed in the absence of Mg2+. At 150 mM NaCl, Mg2+ and guanine nucleotides had no effect. The results suggest the presence of two pools of human choriogonadotropin receptor in rat corpus luteum, one coupled to the guanine nucleotide regulatory protein (Ns) and being Mg2+ dependent and guanine nucleotide sensitive, and the other not coupled to Ns and being Mg2+ independent and guanine nucleotide insensitive.


Life Sciences ◽  
1996 ◽  
Vol 58 (13) ◽  
pp. 1047-1057 ◽  
Author(s):  
C.S. Pang ◽  
P.L. Tang ◽  
Y. Song ◽  
G.M. Brown ◽  
S.F. Panga

1991 ◽  
Vol 276 (1) ◽  
pp. 141-147 ◽  
Author(s):  
S A Mathis ◽  
L M F Leeb-Lundberg

We have previously reported that [3H]bradykinin [(3H]BK) identifies high- and low-affinity B2 kinin receptor sites in bovine myometrial membranes which are sensitive and insensitive respectively to guanine nucleotides. Here we show that these receptor-binding sites are solubilized by the detergent CHAPS. Equilibrium binding in soluble preparations revealed that [3H]BK identified a maximal number of binding sites (Bmax) of 1119 +/- 160 fmol/mg of protein, with an equilibrium dissociation constant (KD) of 314 +/- 70 pM and with a typical B2 kinin receptor specificity. Dissociation of equilibrium binding was biphasic. In the presence of the GTP analogue guanosine 5′[beta gamma-imido]triphosphate (Gpp[NH]p, [3H]BK bound to the soluble receptors with a KD of 929 +/- 129 pM and a Bmax. of 706 +/- 38 fmol/mg of protein. The Gpp(NH)p-promoted decrease in the apparent affinity and Bmax., which was half-maximal at 0.5 microM, was due at least in part to an increase in the dissociation rate of the slowly dissociating component of the equilibrium binding. Recoveries of guanine-nucleotide-sensitivity and of rapidly and slowly dissociating binding components were essentially identical, whether or not the receptor had been occupied by an agonist before solubilization. Sucrose-density-gradient sedimentation profiles revealed that [3H]BK recognized two different molecular forms of the receptor in the absence or presence of guanine nucleotides. These results provide for the first time direct evidence that guanine nucleotides promote a change in the structure of the B2 kinin-receptor complex. We propose that this structural change is due to dissociation of a guanine-nucleotide-regulatory (G-)protein.


Sign in / Sign up

Export Citation Format

Share Document