muscarinic agonist
Recently Published Documents


TOTAL DOCUMENTS

452
(FIVE YEARS 24)

H-INDEX

45
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eyal Rozenfeld ◽  
Merav Tauber ◽  
Yair Ben-Chaim ◽  
Moshe Parnas

AbstractG-protein coupled receptors (GPCRs) play a paramount role in diverse brain functions. Almost 20 years ago, GPCR activity was shown to be regulated by membrane potential in vitro, but whether the voltage dependence of GPCRs contributes to neuronal coding and behavioral output under physiological conditions in vivo has never been demonstrated. Here we show that muscarinic GPCR mediated neuronal potentiation in vivo is voltage dependent. This voltage dependent potentiation is abolished in mutant animals expressing a voltage independent receptor. Depolarization alone, without a muscarinic agonist, results in a nicotinic ionotropic receptor potentiation that is mediated by muscarinic receptor voltage dependency. Finally, muscarinic receptor voltage independence causes a strong behavioral effect of increased odor habituation. Together, this study identifies a physiological role for the voltage dependency of GPCRs by demonstrating crucial involvement of GPCR voltage dependence in neuronal plasticity and behavior. Thus, this study suggests that GPCR voltage dependency plays a role in many diverse neuronal functions including learning and memory.


Pharmacology ◽  
2021 ◽  
Vol 107 (1-2) ◽  
pp. 116-121
Author(s):  
Betül Rabia Erdogan ◽  
Zeynep Elif Yesilyurt ◽  
Ebru Arioglu-Inan ◽  
Martin Christian Michel

Fenoterol is a β<sub>2</sub>-adrenoceptor (AR)-selective agonist that is commonly used to investigate relaxation responses mediated by β<sub>2</sub>-AR in smooth muscle preparations. Some data have questioned this because fenoterol had low potency in the rat urinary bladder when a muscarinic agonist was used as a pre-contraction agent and because some investigators proposed that fenoterol may act in part via β<sub>3</sub>-AR. We designed the present study to investigate whether fenoterol is a proper pharmacological tool to study β<sub>2</sub>-AR-mediated relaxation responses in the rat urinary bladder. Firstly, we have compared the effect of pre-contraction agents on fenoterol potency and found that fenoterol potency was about 1.5 log units greater against KCl than carbachol (pEC<sub>50</sub> 7.19 ± 0.66 and 5.62 ± 1.09 of KCl and of carbachol, respectively). To test the selectivity of fenoterol, we have determined the effects of the β<sub>2</sub>-AR antagonist ICI 118,551 and the β<sub>3</sub>-AR antagonist L 748,337 on relaxation responses to fenoterol. While 300 nM L 748,337 had little effect on the potency of fenoterol (pEC<sub>50</sub> 6.56 ± 0.25 and 6.33 ± 0.61 in the absence and presence of L 748,337, respectively), the relaxation curve for fenoterol was right-shifted in the presence 300 nM ICI 118,551 (pEC<sub>50</sub> 5.03 ± 0.18). Thus, we conclude that fenoterol is a proper pharmacological tool to assess β<sub>2</sub>-AR-mediated responses in the rat urinary bladder and most likely in other smooth-muscle preparations containing multiple subtypes of the β-AR.


2021 ◽  
Author(s):  
Richard A. Seidman ◽  
Heba Khattab ◽  
Jessie J. Polanco ◽  
Jacqueline E. Broome ◽  
Fraser J. Sim

ABSTRACTEndogenous remyelination in demyelinating diseases such as multiple sclerosis is contingent upon the successful differentiation of oligodendrocyte progenitor cells (OPCs). Signaling via the Gαq-coupled muscarinic receptor (M1/3R) inhibits human OPC differentiation and impairs endogenous remyelination in experimental models. We hypothesized that calcium release following Gαq-coupled receptor (GqR) activation directly regulates human OPC (hOPC) cell fate. In this study, we show that specific GqR agonists activating muscarinic and metabotropic glutamate receptors induce characteristic oscillatory calcium release in hOPCs and that these agonists similarly block hOPC maturation in vitro. Both agonists induce calcium release from ER stores and store operated calcium entry (SOCE) likely via STIM/ORAI-based channels. siRNA mediated knockdown (KD) of obligate calcium sensors STIM1 and STIM2 decreased the magnitude of muscarinic agonist induced oscillatory calcium release and attenuated SOCE in hOPCs. In addition, STIM2 expression was necessary to maintain the frequency of calcium oscillations and STIM2 KD reduced spontaneous OPC differentiation. Furthermore, STIM2 siRNA prevented the effects of muscarinic agonist treatment on OPC differentiation suggesting that SOCE is necessary for the anti-differentiative action of muscarinic receptor-dependent signaling. Finally, using a gain-of-function approach with an optogenetic STIM lentivirus, we demonstrate that independent activation of SOCE was sufficient to significantly block hOPC differentiation and this occurred in a frequency dependent manner while increasing hOPC proliferation. These findings suggest that intracellular calcium oscillations directly regulate hOPC fate and that modulation of calcium oscillation frequency may overcome inhibitory Gq-coupled signaling that impairs myelin repair.Significance StatementIn this study, Seidman et al. show that SOCE is a common component of ligand-based Gαq-coupled signaling in hOPCs and that SOCE alone is sufficient to block hOPC differentiation and drive proliferation. Therefore, SOCE blocks differentiation and that pathological SOCE could contribute to myelin disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Li Liu ◽  
Catarina Rippe ◽  
Ola Hansson ◽  
Dmytro Kryvokhyzha ◽  
Steven Fisher ◽  
...  

Myocardin-related transcription factors (MRTFs: myocardin/MYOCD, MRTF-A/MRTFA, and MRTF-B/MRTFB) are co-factors of serum response factor (SRF) that activate the smooth muscle cell (SMC) gene program and that play roles in cardiovascular development and mechanobiology. Gain and loss of function experiments have defined the SMC gene program under control of MRTFs, yet full understanding of their impact is lacking. In the present study, we tested the hypothesis that the muscarinic M3 receptor (CHRM3) is regulated by MRTFs together with SRF. Forced expression of MYOCD (8d) in human coronary artery (SMC) followed by RNA-sequencing showed increased levels of M2, M3, and M5 receptors (CHRM2: 2-fold, CHRM3: 16-fold, and CHRM5: 2-fold). The effect of MYOCD on M3 was confirmed by RT-qPCR using both coronary artery and urinary bladder SMCs, and correlation analyses using human transcriptomic datasets suggested that M3 may also be regulated by MRTF-B. Head-to-head comparisons of MYOCD, MRTF-A and MRTF-B, argued that while all MRTFs are effective, MRTF-B is the most powerful transactivator of CHRM3, causing a 600-fold increase at 120h. Accordingly, MRTF-B conferred responsiveness to the muscarinic agonist carbachol in Ca2+ imaging experiments. M3 was suppressed on treatment with the MRTF-SRF inhibitor CCG-1423 using SMCs transduced with either MRTF-A or MRTF-B and using intact mouse esophagus in culture (by 92±2%). Moreover, silencing of SRF with a short hairpin reduced CHRM3 (by &gt;60%) in parallel with α-actin (ACTA2). Tamoxifen inducible knockout of Srf in smooth muscle reduced Srf (by 54±4%) and Chrm3 (by 41±6%) in the urinary bladder at 10days, but Srf was much less reduced or unchanged in aorta, ileum, colon, trachea, and esophagus. Longer induction (21d) further accentuated the reduction of Chrm3 in the bladder and ileum, but no change was seen in the aorta. Single cell RNA-sequencing revealed that Mrtfb dominates in ECs, while Myocd dominates in SMCs, raising the possibility that Chrm3 may be driven by Mrtfb-Srf in the endothelium and by Myocd-Srf in SMCs. These findings define a novel transcriptional control mechanism for muscarinic M3 receptors in human cells, and in mice, that could be targeted for therapy.


Author(s):  
Ray Mitchell ◽  
Norman E Frederick ◽  
Emily R Holzman ◽  
Francesca Agobe ◽  
Heather C M Allaway ◽  
...  

Dilated cardiomyopathy contributes to morbidity and mortality in Duchenne Muscular Dystrophy (DMD), an inheritable muscle wasting disease caused by a mutation in the dystrophin gene. Preclinical studies in mouse models of muscular dystrophy have demonstrated reduced cardiomyopathy and improved cardiac function following oral treatment with the potent and selective thromboxane A2/prostanoid receptor (TPr) antagonist, ifetroban. Further, a phase 2 clinical trial (NCT03340675, Cumberland Pharmaceutical) is currently recruiting subjects to determine if ifetroban can improve cardiac function in patients with DMD. Although TPr is a promising therapeutic target for the treatment of dilated cardiomyopathy in DMD, little is known about TPr function in coronary arteries that perfuse blood through the cardiac tissue. In the current study, isolated coronary arteries from young (~3-5 months) and aged (~9-12 months) mdx mice, a widely used mouse model of DMD, and age-matched controls were examined using wire myography. Vasoconstriction to increasing concentrations of TPr agonist U-46619(U4) was enhanced in young mdx mice versus controls. Additionally, young mdx mice displayed a significant attenuation in endothelial cell-mediated vasodilation to increasing concentrations of the muscarinic agonist acetylcholine (ACh). Since TPr activation was enhanced in young mdx mice, U4-mediated vasoconstriction was measured in the absence and presence of ifetroban. Ifetroban reduced U4-mediated vasoconstriction in young mdx and both aged mdx and control mice. Overall, our data demonstrate enhanced coronary arterial vasoconstriction to TPr activation in young mdx mice, a phenotype that could be reversed with ifetroban. These data could have important therapeutic implications for improving cardiovascular function in DMD.


2021 ◽  
pp. 2005027
Author(s):  
Almudena Barbero‐Castillo ◽  
Fabio Riefolo ◽  
Carlo Matera ◽  
Sara Caldas‐Martínez ◽  
Pedro Mateos‐Aparicio ◽  
...  

Life Sciences ◽  
2021 ◽  
Vol 272 ◽  
pp. 119194
Author(s):  
Diva de Aguiar Magalhães ◽  
Jalles Arruda Batista ◽  
Stefany Guimarães Sousa ◽  
Jayro dos Santos Ferreira ◽  
Lauanda da Rocha Rodrigues ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuniesky Andrade-Talavera ◽  
Hugo Balleza-Tapia ◽  
Pablo Dolz-Gaitón ◽  
Gefei Chen ◽  
Jan Johansson ◽  
...  

AbstractGamma and theta brain rhythms play important roles in cognition and their interaction can affect gamma oscillation features. Hippocampal theta oscillations depend on cholinergic and GABAergic input from the medial septum-diagonal band of Broca. These projecting neurons undergo degeneration during aging and maintain high levels of neurotrophin receptor p75 (p75NTR). p75NTR mediates both apoptosis and survival and its expression is increased in Alzheimer’s disease (AD) patients. Here, we investigate the importance of p75NTR for the cholinergic input to the hippocampus. Performing extracellular recordings in brain slices from p75NTR knockout mice (p75−/−) in presence of the muscarinic agonist carbachol, we find that gamma oscillation power and rhythmicity are increased compared to wild-type (WT) mice. Furthermore, gamma activity is more phase-locked to the underlying theta rhythm, which renders a stronger coupling of both rhythms. On the cellular level, we find that fast-spiking interneurons (FSNs) fire more synchronized to a preferred gamma phase in p75−/− mice. The excitatory input onto FSN is more rhythmic displaying a higher similarity with the concomitant gamma rhythm. Notably, the ablation of p75NTR counteracts the Aβ-induced degradation of gamma oscillations and its nesting within the underlying theta rhythm. Our results show that the lack of p75NTR signaling could promote stronger cholinergic modulation of the hippocampal gamma rhythm, suggesting an involvement of p75NTR in the downregulation of cognition-relevant hippocampal network dynamics in pathologies. Moreover, functional data provided here suggest p75NTR as a suitable target in the search for efficacious treatments to counteract the loss of cognitive function observed in amyloid-driven pathologies such as AD.


Toxins ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 259
Author(s):  
Petrus Siregar ◽  
Gilbert Audira ◽  
Ling-Yi Feng ◽  
Jia-Hau Lee ◽  
Fiorency Santoso ◽  
...  

Arecoline is one of the nicotinic acid-based alkaloids, which is found in the betel nut. In addition to its function as a muscarinic agonist, arecoline exhibits several adverse effects, such as inducing growth retardation and causing developmental defects in animal embryos, including zebrafish, chicken, and mice. In this study, we aimed to study the potential adverse effects of waterborne arecoline exposure on zebrafish larvae locomotor activity and investigate the possible mechanism of the arecoline effects in zebrafish behavior. The zebrafish behavior analysis, together with molecular docking and the antagonist co-exposure experiment using muscarinic acetylcholine receptor antagonists were conducted. Zebrafish larvae aged 96 h post-fertilization (hpf) were exposed to different concentrations (0.001, 0.01, 0.1, and 1 ppm) of arecoline for 30 min and 24 h, respectively, to find out the effect of arecoline in different time exposures. Locomotor activities were measured and quantified at 120 hpf. The results showed that arecoline caused zebrafish larvae locomotor hyperactivities, even at a very low concentration. For the mechanistic study, we conducted a structure-based molecular docking simulation and antagonist co-exposure experiment to explore the potential interactions between arecoline and eight subtypes, namely, M1a, M2a, M2b, M3a, M3b, M4a, M5a, and M5b, of zebrafish endogenous muscarinic acetylcholine receptors (mAChRs). Arecoline was predicted to show a strong binding affinity to most of the subtypes. We also discovered that the locomotion hyperactivity phenotypes triggered by arecoline could be rescued by co-incubating it with M1 to M4 mAChR antagonists. Taken together, by a pharmacological approach, we demonstrated that arecoline functions as a highly potent hyperactivity-stimulating compound in zebrafish that is mediated by multiple muscarinic acetylcholine receptors.


2021 ◽  
pp. 026988112097242
Author(s):  
Graeme D Betts ◽  
Tristan J Hynes ◽  
Catharine A Winstanley

Background: Pairing rewards with sensory stimulation, in the form of auditory and visual cues, increases risky decision-making in both rats and humans. Understanding the neurobiological basis of this effect could help explain why electronic gambling machines are so addictive, and inform treatment development for compulsive gambling and gaming. Numerous studies implicate the dopamine system in mediating the motivational influence of reward-paired cues; recent data suggest the cholinergic system also plays a critical role. Previous work also indicates that cholinergic drugs alter decision-making under uncertainty. Aims: We investigated whether the addition of reward-concurrent cues to the rat gambling task (crGT) altered the effects of peripherally administered cholinergic compounds. Methods: Muscarinic and nicotinic agonists and antagonists were administered to 16 male, Long–Evans rats trained on the crGT. Measures of optimal/risky decision-making and motor impulsivity were the main dependent variables of interest. Results: The muscarinic receptor antagonist scopolamine improved decision-making overall, decreasing selection of one of the risky options while increasing choice of the more advantageous options. The muscarinic agonist oxotremorine increased choice latency but did not significantly affect option preference. Neither the nicotinic antagonist mecamylamine nor the agonist nicotine affected choice patterns, but mecamylamine decreased premature responding, an index of motor impulsivity. Conclusions: These results contrast sharply from those obtained previously using the uncued rGT, and suggest that the deleterious effects of win-paired cues on decision-making and impulse control may result from elevated cholinergic tone.


Sign in / Sign up

Export Citation Format

Share Document