A Meta-Analysis of Forest Cover, Edge Effects, and Artificial Nest Predation Rates

2008 ◽  
Vol 12 (2) ◽  
pp. 465-469 ◽  
Author(s):  
Mitschka J. Hartley ◽  
Malcolm L. Hunter
2007 ◽  
Vol 23 (3) ◽  
pp. 519-527 ◽  
Author(s):  
Richard A. Noske ◽  
Sarah Fischer ◽  
Barry W. Brook

2012 ◽  
Vol 27 (5) ◽  
pp. 659-669 ◽  
Author(s):  
W. Andrew Cox ◽  
Frank R. Thompson ◽  
John Faaborg

Ibis ◽  
2011 ◽  
Vol 154 (1) ◽  
pp. 5-14 ◽  
Author(s):  
JUAN D. IBÁÑEZ-ÁLAMO ◽  
OLIVIA SANLLORENTE ◽  
MANUEL SOLER

2014 ◽  
Vol 44 (3) ◽  
pp. 393-396 ◽  
Author(s):  
Fernanda Michalski ◽  
Darren Norris

Observational and experimental studies have shown that increased concealment of bird nests reduces nest predation rates. The objective of the present study was to evaluate differences in predation rates between two experimental manipulations of artificial ground nests (i.e., clearing an area around the artificial nest or leaving it as natural as possible), and test whether environmental variables also affected nest predation in an undisturbed area of Amazonian forest in eastern Brazil. A generalized linear model was used to examine the influence of five variables (manipulation type, perpendicular distance from the main trail, total basal area of trees surrounding the nest site, understorey density, and liana quantity) on nest predation rates. Model results, showed that manipulation type was the only variable that significantly affected nest predation rates. Thus, to avoid systematic biases, the influence of nest site manipulation must be taken into consideration when conducting experiments with artificial nests.


2008 ◽  
Vol 38 (7) ◽  
pp. 1974-1982 ◽  
Author(s):  
Randy G. Thompson ◽  
Ian G. Warkentin ◽  
Stephen P. Flemming

Predation rates on the eggs and young of forest-nesting songbirds typically rise in association with anthropogenic fragmentation, but predator responses depend on the spatial scale of disturbance, context, and predator assemblages present. For landscapes that are naturally fragmented, such as the boreal forest, our understanding of nest predation patterns associated with harvest may be further confounded by an additive response of nest predators to the loss of forest cover and the extension of habitat edges. We examined predation rates on artificial nests across a range of values for landscape metrics reflecting natural and anthropogenic forest fragmentation during two summers in boreal forest stands of western Newfoundland, Canada. Nest predation by gray jays ( Perisoreus canadensis (L.)) increased significantly in logged areas, and gray jay abundance was positively linked to increasing amounts of logged edge; however, there was no response to the extent of natural openings suggesting that nest predation by jays was additive in the presence of harvest-created openings. In contrast, neither mammalian nest predators nor the unidentified predators (responsible for the largest proportion of nest losses) showed any association with the landscape fragmentation metrics assessed. Year effects shown by the unidentified nest predator category did coincide with a marked increase in small mammal and Newfoundland marten ( Martes americana (Turton) subsp. atrata (Bangs)) populations during our study. Thus, we were able to identify an additive predation response to logging, but also that the activities of predators may vary over space and time and, in turn, may variably influence the success of songbirds nesting in forests fragmented by logging.


2005 ◽  
Vol 32 (4) ◽  
pp. 313 ◽  
Author(s):  
Fiona J. Fraser ◽  
Peter J. Whitehead

Depredation of artificial ground nests was examined in tropical savanna in northern Australia to assess potential predation pressures on nests of the partridge pigeon (Geophaps smithii), a declining tropical granivore. Predation rates were examined at two sites, Kakadu National Park (which supported a relatively high density of partridge pigeons) and Berry Springs (which had greater habitat fragmentation and comparatively low partridge pigeon density). The effects of distance from road, understorey structure, topography and nest-microsite concealment on nest predation rates were examined. Artificial-nest predation rates were greater at 150 m from roads than <1 m from the roadside. Predation rates did not vary with understorey structure, topography, or level of nest concealment. There was marked variation between sites, with predation levels at Kakadu more than double those recorded for Berry Springs. Discerning predator identity, or even the size of a predator, from marks left in clay eggs proved difficult and was possible for ~35% of predation events. Of these, 42% of predation events involved predators of a size we considered too small to take a natural partridge pigeon nest. We suggest that extrapolation from artificial to natural ground-nest predation rates be undertaken with caution for landscapes such as Australia’s tropical savanna, which supports a high diversity and abundance of small potential predators of artificial nests. There was no evidence of predation by birds, and the methodology proved inadequate for identifying predation by feral cats (Felis catus).


2011 ◽  
Vol 7 (6) ◽  
pp. 954-957 ◽  
Author(s):  
Matthias Vögeli ◽  
Paola Laiolo ◽  
David Serrano ◽  
José L. Tella

Artificial nest experiments (ANEs) are widely used to obtain proxies of natural nest predation for testing a variety of hypotheses, from those dealing with variation in life-history strategies to those assessing the effects of habitat fragmentation on the persistence of bird populations. However, their applicability to real-world scenarios has been criticized owing to the many potential biases in comparing predation rates of artificial and natural nests. Here, we aimed to test the validity of estimates of ANEs using a novel approach. We related predation rates on artificial nests to population viability analyses in a songbird metapopulation as a way of predicting the real impact of predation events on the local populations studied. Predation intensity on artificial nests was negatively related to the species' annual population growth rate in small local populations, whereas the viability of large local populations did not seem to be influenced, even by high nest predation rates. The potential of extrapolation from ANEs to real-world scenarios is discussed, as these results suggest that artificial nest predation estimates may predict demographic processes in small structured populations.


Sign in / Sign up

Export Citation Format

Share Document