Cholinergic, opioid and glycine receptor binding sites localized in human spinal cord by in vitro autoradiography Changes in amyotrophic lateral sclerosis

2009 ◽  
Vol 72 (3) ◽  
pp. 299-306 ◽  
Author(s):  
Per-Göran Gillberg ◽  
Sten-Magnus Aquilonius
2018 ◽  
Vol 17 (4) ◽  
pp. 1712-1729 ◽  
Author(s):  
Kathryn Volkening ◽  
Brian A. Keller ◽  
Cheryl Leystra-Lantz ◽  
Michael J. Strong

2019 ◽  
Vol 56 (10) ◽  
pp. 6777-6791 ◽  
Author(s):  
Carlos González-Fernández ◽  
Pau Gonzalez ◽  
Pol Andres-Benito ◽  
Isidro Ferrer ◽  
Francisco Javier Rodríguez

1994 ◽  
Vol 97 (1) ◽  
pp. 73-84 ◽  
Author(s):  
A. Adem ◽  
J. Ekblom ◽  
P. G. Gillberg ◽  
S. S. Jossan ◽  
A. H��g ◽  
...  

2013 ◽  
Vol 124 (5) ◽  
pp. 695-707 ◽  
Author(s):  
Jörg Hanrieder ◽  
Titti Ekegren ◽  
Malin Andersson ◽  
Jonas Bergquist

1982 ◽  
Vol 250 (2) ◽  
pp. 394-397 ◽  
Author(s):  
Per-Go¨ran Gillberg ◽  
Sten-Magnus Aquilonius ◽  
Sven-åke Eckerna¨s ◽  
Gudmar Lundqvist ◽  
Bengt Winblad

1983 ◽  
Vol 267 (2) ◽  
pp. 392-396 ◽  
Author(s):  
Andrzej Członkowski ◽  
Tommaso Costa ◽  
Ryszard Przewłocki ◽  
Aurelio Pasi´ ◽  
Albert Herz

2020 ◽  
Author(s):  
Jerry C. Wang ◽  
Gokul Ramaswami ◽  
Daniel H. Geschwind

AbstractAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease defined by motor neuron (MN) loss. Multiple genetic risk factors have been identified, implicating RNA and protein metabolism and intracellular transport, among other biological mechanisms. To achieve a systems-level understanding of the mechanisms governing ALS pathophysiology, we built gene co-expression networks using RNA-sequencing data from control human spinal cord samples, identifying 13 gene co-expression modules, each of which represents a distinct biological process or cell type. Analysis of four RNA-seq datasets from a range of ALS disease-associated contexts reveal dysregulation in numerous modules related to ribosomal function, wound response, and leukocyte activation, implicating astrocytes, oligodendrocytes, endothelia, and microglia in ALS pathophysiology. To identify potentially causal processes, we partitioned heritability across the genome, finding that ALS common genetic risk is enriched within two specific modules, SC.M4, representing genes related to RNA processing and gene regulation, and SC.M2, representing genes related to intracellular transport and autophagy and enriched in oligodendrocyte markers. Top hub genes of this module include ALS-implicated risk genes such as KPNA3, TMED2, and NCOA4, the latter of which regulates ferritin autophagy, implicating this process in ALS pathophysiology. These unbiased, genome-wide analyses confirm the utility of a systems approach to understanding the causes and drivers of ALS.


Sign in / Sign up

Export Citation Format

Share Document