als patients
Recently Published Documents


TOTAL DOCUMENTS

1043
(FIVE YEARS 447)

H-INDEX

54
(FIVE YEARS 8)

BMC Medicine ◽  
2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Frances Theunissen ◽  
Loren L. Flynn ◽  
Ryan S. Anderton ◽  
P. Anthony Akkari

AbstractThere is considerable variability in disease progression for patients with amyotrophic lateral sclerosis (ALS) including the age of disease onset, site of disease onset, and survival time. There is growing evidence that short structural variations (SSVs) residing in frequently overlooked genomic regions can contribute to complex disease mechanisms and can explain, in part, the phenotypic variability in ALS patients. Here, we discuss SSVs recently characterized by our laboratory and how these discoveries integrate into the current literature on ALS, particularly in the context of application to future clinical trials. These markers may help to identify and differentiate patients for clinical trials that have a similar ALS disease mechanism(s), thereby reducing the impact of participant heterogeneity. As evidence accumulates for the genetic markers discovered in SQSTM1, SCAF4, and STMN2, we hope to improve the outcomes of future ALS clinical trials.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 293
Author(s):  
Maria Garofalo ◽  
Cecilia Pandini ◽  
Matteo Bordoni ◽  
Emanuela Jacchetti ◽  
Luca Diamanti ◽  
...  

Superoxide dismutase 1 (SOD1) is one of the causative genes associated with amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder. SOD1 aggregation contributes to ALS pathogenesis. A fraction of the protein is localized in the nucleus (nSOD1), where it seems to be involved in the regulation of genes participating in the oxidative stress response and DNA repair. Peripheral blood mononuclear cells (PBMCs) were collected from sporadic ALS (sALS) patients (n = 18) and healthy controls (n = 12) to perform RNA-sequencing experiments and differential expression analysis. Patients were stratified into groups with “high” and “low” levels of nSOD1. We obtained different gene expression patterns for high- and low-nSOD1 patients. Differentially expressed genes in high nSOD1 form a cluster similar to controls compared to the low-nSOD1 group. The pathways activated in high-nSOD1 patients are related to the upregulation of HSP70 molecular chaperones. We demonstrated that, in this condition, the DNA damage is reduced, even under oxidative stress conditions. Our findings highlight the importance of the nuclear localization of SOD1 as a protective mechanism in sALS patients.


2022 ◽  
Vol 5 (4) ◽  
pp. e202101193
Author(s):  
Megumi Akamatsu ◽  
Takenari Yamashita ◽  
Sayaka Teramoto ◽  
Zhen Huang ◽  
Janet Lynch ◽  
...  

In motor neurons of sporadic amyotrophic lateral sclerosis (ALS) patients, the RNA editing at the glutamine/arginine site of the GluA2 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors is defective or incomplete. As a result, AMPA receptors containing the abnormally expressed, unedited isoform of GluA2 are highly Ca2+-permeable, and are responsible for mediating abnormal Ca2+ influx, thereby triggering motor neuron degeneration and cell death. Thus, blocking the AMPA receptor–mediated, abnormal Ca2+ influx is a potential therapeutic strategy for treatment of sporadic ALS. Here, we report a study of the efficacy and safety of two RNA aptamers targeting AMPA receptors on the ALS phenotype of AR2 mice. A 12-wk continuous, intracerebroventricular infusion of aptamers to AR2 mice reduced the progression of motor dysfunction, normalized TDP-43 mislocalization, and prevented death of motor neurons. Our results demonstrate that the use of AMPA receptor aptamers as a novel class of AMPA receptor antagonists is a promising strategy for developing an ALS treatment approach.


Author(s):  
Masahiko Takahashi ◽  
Hiroki Kitaura ◽  
Akiyoshi Kakita ◽  
Taichi Kakihana ◽  
Yoshinori Katsuragi ◽  
...  

TDP-43 is a causative factor of amyotrophic lateral sclerosis (ALS). Cytoplasmic TDP-43 aggregates in neurons are a hallmark pathology of ALS. Under various stress conditions, TDP-43 localizes sequentially to two cytoplasmic protein aggregates: stress granules (SGs) first, and then aggresomes. Accumulating evidence suggests that delayed clearance of TDP-43-positive SGs is associated with pathological TDP-43 aggregates in ALS. We found that USP10 promotes the clearance of TDP-43-positive SGs in cells treated with proteasome inhibitor, thereby promoting the formation of TDP-43-positive aggresomes, and the depletion of USP10 increases the amount of insoluble TDP-35, a cleaved product of TDP-43, in the cytoplasm. TDP-35 interacted with USP10 in an RNA-binding dependent manner; however, impaired RNA-binding of TDP-35 reduced the localization in SGs and aggresomes and induced USP10-negative TDP-35 aggregates. Immunohistochemistry showed that most of the cytoplasmic TDP-43/TDP-35-aggregates in the neurons of ALS patients were USP10-negative. Our findings suggest that USP10 inhibits aberrant aggregation of TDP-43/TDP-35 in the cytoplasm of neuronal cells by promoting the clearance of TDP-43/TDP-35-positive SGs and facilitating the formation of TDP-43/TDP-35-positive aggresomes.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 209
Author(s):  
Miguel A. Rubio ◽  
Mireia Herrando-Grabulosa ◽  
Roser Velasco ◽  
Israel Blasco ◽  
Monica Povedano ◽  
...  

Diagnosis of ALS is based on clinical symptoms when motoneuron degeneration is significant. Therefore, new approaches for early diagnosis are needed. We aimed to assess if alterations in appearance and cellular localization of cutaneous TDP-43 may represent a biomarker for ALS. Skin biopsies from 64 subjects were analyzed: 44 ALS patients, 10 healthy controls (HC) and 10 neurological controls (NC) (Parkinson’s disease and multiple sclerosis). TDP-43 immunoreactivity in epidermis and dermis was analyzed, as well as the percentage of cells with TDP-43 cytoplasmic localization. We detected a higher amount of TDP-43 in epidermis (p < 0.001) and in both layers of dermis (p < 0.001), as well as a higher percentage of TDP-43 cytoplasmic positive cells (p < 0.001) in the ALS group compared to HC and NC groups. Dermal cells containing TDP-43 were fibroblasts as identified by co-labeling against vimentin. ROC analyses (AUC 0.867, p < 0.001; CI 95% 0.800–0.935) showed that detection of 24.1% cells with cytoplasmic TDP-43 positivity in the dermis had 85% sensitivity and 80% specificity for detecting ALS. We have identified significantly increased TDP-43 levels in epidermis and in the cytoplasm of dermal cells of ALS patients. Our findings provide support for the use of TDP-43 in skin biopsies as a potential biomarker.


2022 ◽  
Vol 13 ◽  
Author(s):  
Yixuan Zhang ◽  
Xiangyi Liu ◽  
Jiayu Fu ◽  
Yuanjin Zhang ◽  
Xue Yang ◽  
...  

Introduction: Alterations in the visual pathway involving the retina have been reported in amyotrophic lateral sclerosis (ALS) but they lack consistency and subgroup analysis. We aimed to assess the retinal nerve fiber layer (RNFL) and retinal ganglion cells (RGCs) alterations in different stages of ALS patients and their association with ALS progression parameters.Methods: The study population consisted of 70 clinically diagnosed ALS patients and 55 age, sex matched controls. All of them underwent ophthalmic assessments and optical coherence tomography imaging. Four quadrants of the peripapillary RNFL and ganglion cell/inner plexiform complex (GCIP) were observed and automatically measured. Early-stage distal motor neuron axon dysfunction in ALS was detected by compound muscle action potential (CMAP) of the distal limbs within 12 months. The ALS disease parameters included the ALSFRS-R score and the disease progression rate (ΔFS).Results: Generally compared with controls, the nasal (p = 0.016) quadrant of the RNFL was thicker in ALS patients. When controlling for age and ΔFS, the RNFL(r = 0.37, p = 0.034) and GCIP(r = 0.40, p = 0.021) were significantly thickened as disease progressed within 12 months, while the RNFL declined with time after one year (r = −0.41, p = 0.037). ALS patients was subclassified into thickened RNFL (T-RNFL, &gt;95th percentile of normal), impaired RNFL (I-RNFL, &lt;5th percentile of normal) and normal RNFL. There were significant differences in the GCIP among the three groups (p &lt; 0.001). In the T-RNFL group (n = 18), the RNFL was negatively correlated with the abductor pollicis brevis-CMAP amplitude within 12 months (r = −0.56, p = 0.01). Patients within 12 months in this group progressed faster than others (p = 0.039). In the normal RNFL group (n = 22), 13 patients were diagnosed beyond 12 months, whose ΔFS was remarkably lower (p = 0.007). In I-RNFL group (n = 30), the early stage patients (&lt;12 months) had significant higher ΔFS (p = 0.006). One patient was with SOD1 pathogenic variant (p.A5V).Conclusion: Alterations of retinal nerve were not consistent in ALS patients with diverse phenotypes and progression rates. Generally speaking, the RNFL thickened during the first year and then gradually declined, which is related to but preceding the thickness change of the RGCs. Patients with a significant RNFL thinning in the early stage may have a faster progression rate. The inverse U-shaped curve transformation might be in accordance with early-stage motor neuron axonopathy.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
A. Joseph Bloom ◽  
Xianrong Mao ◽  
Amy Strickland ◽  
Yo Sasaki ◽  
Jeffrey Milbrandt ◽  
...  

Abstract Background In response to injury, neurons activate a program of organized axon self-destruction initiated by the NAD+ hydrolase, SARM1. In healthy neurons SARM1 is autoinhibited, but single amino acid changes can abolish autoinhibition leading to constitutively active SARM1 enzymes that promote degeneration when expressed in cultured neurons. Methods To investigate whether naturally occurring human variants might disrupt SARM1 autoinhibition and potentially contribute to risk for neurodegenerative disease, we assayed the enzymatic activity of all 42 rare SARM1 alleles identified among 8507 amyotrophic lateral sclerosis (ALS) patients and 9671 controls. We then intrathecally injected mice with virus expressing SARM1 constructs to test the capacity of an ALS-associated constitutively active SARM1 variant to promote neurodegeneration in vivo. Results Twelve out of 42 SARM1 missense variants or small in-frame deletions assayed exhibit constitutive NADase activity, including more than half of those that are unique to the ALS patients or that occur in multiple patients. There is a > 5-fold enrichment of constitutively active variants among patients compared to controls. Expression of constitutively active ALS-associated SARM1 alleles in cultured dorsal root ganglion (DRG) neurons is pro-degenerative and cytotoxic. Intrathecal injection of an AAV expressing the common SARM1 reference allele is innocuous to mice, but a construct harboring SARM1V184G, the constitutively active variant found most frequently among the ALS patients, causes axon loss, motor dysfunction, and sustained neuroinflammation. Conclusions These results implicate rare hypermorphic SARM1 alleles as candidate genetic risk factors for ALS and other neurodegenerative conditions.


2022 ◽  
Author(s):  
Teresa Cunha-Oliveira ◽  
Marcelo Carvalho ◽  
Vilma Sardão ◽  
Elisabete Ferreiro ◽  
Débora Mena ◽  
...  

Abstract Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with a rapid progression and no effective treatment. Metabolic and mitochondrial alterations in peripheral tissues of ALS patients may present diagnostic and therapeutic interest. We aimed to identify mitochondrial fingerprints in lymphoblast from ALS patients harboring SOD1 mutations (mutSOD1) or with unidentified mutations (undSOD1), compared with age/sex matched controls. Three groups of lymphoblasts, from mutSOD1 or undSOD1 ALS patients and age/sex-matched controls, were obtained from Coriell Biobank and divided into 3 age/sex-matched cohorts. Mitochondria-associated metabolic pathways were analyzed using Seahorse MitoStress and ATP Rate assays, complemented with metabolic phenotype microarrays, metabolite levels, gene expression, and protein expression and activity. Pooled (all cohorts) and paired (intra-cohort) analyses were performed by using bioinformatic tools, and the features with higher information gain values were selected and used for principal component analysis and Naïve Bayes classification. Pooled analysis revealed that undSOD1 patients had statistically higher glycolytic ATP production rate and lower Tfam protein content compared to controls, which were also the experimental features highlighted by multidimensional analysis. Metabolic phenotypic profiles in lymphoblasts from ALS patients with mutSOD1 and undSOD1 revealed unique age-dependent different substrate oxidation profiles. For most parameters, different patterns of variation were found between cohorts, which may be due to age or sex. In the present work, we investigated several metabolic and mitochondrial hallmarks in lymphoblasts from each donor and, although a high heterogeneity of results was found, we identified specific metabolic and mitochondrial fingerprints that may have a diagnostic and therapeutic interest.


2022 ◽  
Author(s):  
Yixuan Zhang ◽  
Jingyue Ma ◽  
Shuo Zhang ◽  
Zhou Yu ◽  
Dongsheng Fan

Abstract Objective Detecting peripheral nerve damage by electrophysiology examination accurately and sensitively is important for the follow-up evaluation of amyotrophic lateral sclerosis(ALS). In this study, we applied a new proximal E2 electrode in the ulnar motor nerve conduction study with E1 on abductor digiti minimi(ADM), and investigated its effect on the compound muscle action potential(CMAP) of the ulnar nerve. Methods We included 64 ALS patients and 64 age- and sex- matched controls. Patients characteristics were collected for phenotype, symptom duration and site of onset. The revised ALS Functional Rating Scale(ALSFRS-R) was evaluated at the time of administration to assess the severity of ALS. The ulnar nerve CMAP was recorded using an E1 electrode on the muscle belly and an E2 electrode on distal tendon(traditional montage, CMAP-dE2) and proximal tendon(new montage, CMAP-pE2) respectively. Results The waveform of CMAP-pE2 was steadier presenting a uniform unilobed pattern. In the controls, there were no significant differences between the amplitudes of CMAP-dE2 and CMAP-pE2(p=0.96). In ALS patients, the amplitude of CMAP-pE2 was significantly lower than that of CMAP-dE2(p<0.01), especially for patients with ADM spontaneous activity and muscular atrophy. Using the new method, the damaged axons were more likely to be stratified into more severe decreased levels. Furthermore, the decline of CMAP-pE2 was significantly correlated with ALSFRS-R(p<0.01). Conclusions The new electrode configuration in the ulnar nerve conduction test could reflect the degree of axonal injury much more sensitively after the presence of ulnar nerve degeneration and was more suitable for the evaluation of disease progression.


2021 ◽  
Vol 12 (1) ◽  
pp. 49
Author(s):  
Giulia D’Alvano ◽  
Daniela Buonanno ◽  
Carla Passaniti ◽  
Manuela De Stefano ◽  
Luigi Lavorgna ◽  
...  

Family caregivers of people with amyotrophic lateral sclerosis (ALS), a severely disabling neurodegenerative disease due to the degeneration of both upper and lower motor neurons, have a very demanding role in managing their relatives, thereby often experiencing heavy care burden. Previous literature has widely highlighted that this situation reduces caregivers’ quality of life and increases their psychological distress and risk of health problems, but there are relatively few studies that focus on psychological interventions for these situations. Family support is more—not less—important during crisis. However, during the COVID-19 pandemic, maintaining public safety has required restricting the physical presence of families for hospitalized patients. Caregivers of ALS patients felt increased sense of loneliness and experienced greater difficulties in the access to both hospital and home assistance. In response, health systems rapidly adapted family-centric procedures and tools to circumvent restrictions on physical presence. In this regard, internet-based and telehealth solutions have been adopted to facilitate the routine, predictable, and structured communication, crucial to family-centered care. This narrative review aims at addressing more current matters on support needs and interventions for improving wellbeing of caregivers of ALS patients. In particular, we aimed at highlighting several gaps related to the complex needs of caregivers of ALS patients, to the interventions carried out in order to respond to these needs, and to the changes that COVID-19 pandemic caused from 2020 to nowadays in clinical managing of ALS patients. Finally, we report ongoing experiences of psychological support for family caregivers of ALS patients through telehealth solutions, which have been reinforced in case of needing of physical distancing during the COVID-19 pandemic.


Sign in / Sign up

Export Citation Format

Share Document