Differential saturation of Pacific Northwest and Southeast (USA) fish assemblages

2012 ◽  
Vol 21 (4) ◽  
pp. 617-626
Author(s):  
Daniel J. McGarvey
2008 ◽  
Vol 82 (4) ◽  
pp. 251-258 ◽  
Author(s):  
Henry R. LaVigne ◽  
Robert M. Hughes ◽  
Alan T. Herlihy

2018 ◽  
Vol 588 ◽  
pp. 179-189 ◽  
Author(s):  
BL Gilby ◽  
AD Olds ◽  
RM Connolly ◽  
PS Maxwell ◽  
CJ Henderson ◽  
...  

2018 ◽  
Vol 592 ◽  
pp. 225-242 ◽  
Author(s):  
E Cruz-Acevedo ◽  
N Tolimieri ◽  
H Aguirre-Villaseñor

2020 ◽  
Vol 649 ◽  
pp. 125-140
Author(s):  
DS Goldsworthy ◽  
BJ Saunders ◽  
JRC Parker ◽  
ES Harvey

Bioregional categorisation of the Australian marine environment is essential to conserve and manage entire ecosystems, including the biota and associated habitats. It is important that these regions are optimally positioned to effectively plan for the protection of distinct assemblages. Recent climatic variation and changes to the marine environment in Southwest Australia (SWA) have resulted in shifts in species ranges and changes to the composition of marine assemblages. The goal of this study was to determine if the current bioregionalisation of SWA accurately represents the present distribution of shallow-water reef fishes across 2000 km of its subtropical and temperate coastline. Data was collected in 2015 using diver-operated underwater stereo-video surveys from 7 regions between Port Gregory (north of Geraldton) to the east of Esperance. This study indicated that (1) the shallow-water reef fish of SWA formed 4 distinct assemblages along the coast: one Midwestern, one Central and 2 Southern Assemblages; (2) differences between these fish assemblages were primarily driven by sea surface temperature, Ecklonia radiata cover, non-E. radiata (canopy) cover, understorey algae cover, reef type and reef height; and (3) each of the 4 assemblages were characterised by a high number of short-range Australian and Western Australian endemic species. The findings from this study suggest that 4, rather than the existing 3 bioregions would more effectively capture the shallow-water reef fish assemblage patterns, with boundaries having shifted southwards likely associated with ocean warming.


Sign in / Sign up

Export Citation Format

Share Document