seagrass meadows
Recently Published Documents


TOTAL DOCUMENTS

745
(FIVE YEARS 300)

H-INDEX

52
(FIVE YEARS 6)

2022 ◽  
Vol 302 ◽  
pp. 113969
Author(s):  
Valentina Costa ◽  
Mogens R. Flindt ◽  
Marta Lopes ◽  
J. Pedro Coelho ◽  
Ana F. Costa ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
pp. 160
Author(s):  
Subhash Chand ◽  
Barbara Bollard

Seagrass meadows are undergoing significant decline locally and globally from human and climatic impacts. Seagrass decline also impacts seagrass-dependent macrofauna benthic activity, interrupts their vital linkage with adjacent habitats, and creates broader degradation through the ecosystem. Seagrass variability (gain and loss) is a driver of marine species diversity. Still, our understanding of macrofauna benthic activity distribution and their response to seagrass variability from remotely sensed drone imagery is limited. Hence, it is critical to develop fine-scale seasonal change detection techniques appropriate to the scale of variability that will apply to dynamic marine environments. Therefore, this research tested the performance of the VIS and VIS+NIR sensors from proximal low altitude remotely piloted aircraft system (RPAS) to detect fine-scale seasonal seagrass variability using spectral indices and a supervised machine learning classification technique. Furthermore, this research also attempted to identify and quantify macrofauna benthic activity from their feeding burrows and their response to seagrass variability. The results from VIS (visible spectrum) and VIS+NIR (visible and near-infrared spectrum) sensors produced a 90–98% classification accuracy. This accuracy established that the spectral indices were fundamental in this study to identify and classify seagrass density. The other important finding revealed that seagrass-associated macrofauna benthic activity showed increased or decreased abundance and distribution with seasonal seagrass variability from drone high spatial resolution orthomosaics. These results are important for seagrass conservation because managers can quickly detect fine-scale seasonal changes and take mitigation actions before the decline of this keystone species affects the entire ecosystem. Moreover, proximal low-altitude, remotely sensed time-series seasonal data provided valuable contributions for documenting spatial ecological seasonal change in this dynamic marine environment.


Diversity ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 21
Author(s):  
Felix Ivo Rossbach ◽  
Benedikt Merk ◽  
Christian Wild

The Mediterranean Sea comprises habitats such as Posidonia oceanica seagrass meadows that exhibit high associated biodiversity of sessile organisms. Recent pilot research indicates that benthic mats formed by the scarcely investigated fleshy red alga Phyllophora crispa also host a high diversity of benthic fauna. Among the key taxa found in these mats in the recent pilot studies are benthic foraminifera that live as epiphytes on the red algae thalli. Knowledge about their abundance and species richness associated with this habitat in relation to reference habitats is missing. We thus carried out a comparative assessment focusing on foraminifera within samples from P. crispa mats and neighboring P. oceanica meadows on five different sampling sites around Giglio Island in the Tuscan Archipelago (Tyrrhenian Sea, Italy). A total of 104 different foraminiferal taxa were identified, of which a total of 85 taxa were found in P. crispa samples (46 exclusively in this habitat). This biodiversity was higher compared to other studies on phytal habitats in the Mediterranean Sea. The number of foraminiferal taxa associated with P. crispa was significantly higher (average 27.5 ± 8.1 taxa) compared to P. oceanica (leaves average 7.0 ± 3.6, shoots average 7.9 ± 3.4 taxa). The abundance of foraminifera (12,000 individuals m−2 surface area of P. crispa mat) was also higher than in the neighboring P. oceanica meadows (7792 individuals m−2 leaf and 8171 individuals m−2 shoot surface area). The most frequently found taxa across habitats were Miniacina miniacea, Lobatula lobatula, and Sejunctella sp. (24%, 20%, and 6% of the total population, respectively). Our results imply that P. crispa mats host an exceptional diversity of associated foraminifera that is even higher than those associated with seagrass meadows. Red algae mats built by P. crispa may thus be considered as potential refuge habitats and biodiversity reservoirs in management and conservation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Alyson Lowell ◽  
Eduardo Infantes ◽  
Laura West ◽  
Lauren Puishys ◽  
Claudia E. L. Hill ◽  
...  

Elevated partial pressure of carbon dioxide (pCO2) as a concomitant of global climate change may facilitate the establishment of future seagrass meadows and subsequently its benefit could be incorporated into techniques to increase restoration success. In five manipulative experiments, we determined how increased CO2 affects the maturation of flowers, and the development of seeds and seedlings for the foundation species Zostera marina. Experiments tested the development from both seeds collected from non-treated flowering shoots (direct) and seeds harvested from flowering shoots after CO2 exposure (parental carryover). Flowering shoots were collected along the western coast of Sweden near the island of Skafto. The seeds produced were used in experiments conducted at Kristineberg, Sweden and Dauphin Island, AL, United States. Experiments varied in temperature (16, 18°C) and salinity (19, 33 ppt), as well as duration and magnitude of elevated CO2 exposure. Environmental conditions among experiments, such as temperature (16, 18°C) and salinity (19, 33 ppt), as well as duration and magnitude of pCO2 exposure differed. Flowering maturation, spathe number, seed production, and indicators of seed quality did not appear to be affected by 39–69 days of exposure to CO2 conditions outside of natural variability (pCO2 = 1547.2 ± 267.60 μatm; pHT = 7.53 ± 0.07). Yet, seeds produced from these flowers showed twofold greater germination success. In another experiment, flowering shoots were exposed to an extreme CO2 condition (pCO2 = 5950.7 ± 1,849.82 μatm; pHT = 6.96 ± 0.15). In this case, flowers generated seeds that demonstrated a fivefold increase in an indicator for seed viability (sinking velocity). In the latter experiment, however, germination appeared unaffected. Direct CO2 effects on germination and seedling production were not observed. Our results provide evidence of a parental CO2 effect that can benefit germination or seed viability, but early benefits may not lead to bed establishment if other environmental conditions are not well suited for seedling development. Outcomes have implications for restoration; CO2 can be supplied to flowering shoot holding tanks to bolster success when the purpose is to redistribute seeds to locations where beds are extant and water quality is adequate.


2021 ◽  
Author(s):  
Antoine Saint-Amand ◽  
Alana Grech ◽  
Severine Choukroun ◽  
Emmanuel Hanert

A major coal mine project in Queensland, Australia, is currently under review. It is planned to be located about 10 km away from the Great Barrier Reef World Heritage Area (GBRWHA). Sediment dispersal patterns and their impact on marine ecosystems have not been properly assessed yet. Here, we simulate the dispersal of different sediment types with a high-resolution ocean model, and derive their environmental footprint. We show that sediments finer than 32 µm could reach dense seagrass meadows and a dugong sanctuary within a few weeks. The intense tidal circulation leads to non-isotropic and long-distance sediment dispersal patterns along the coast. Our results suggest that the sediments released by this project will not be quickly mixed but rather be concentrated where the most valuable ecosystems are located. If accepted, this coal mine could therefore have a far-reaching impact on the GBRWHA and its iconic marine species.


2021 ◽  
Vol 8 ◽  
Author(s):  
Bryce Van Dam ◽  
Christian Lopes ◽  
Mary A. Zeller ◽  
Mariana Ribas-Ribas ◽  
Hongjie Wang ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Ryan B. Wallace ◽  
Bradley J. Peterson ◽  
Christopher J. Gobler

Changes in photosynthetic and respiration rates in coastal marine habitats cause considerable variability in ecosystem metabolism on timescales ranging from diel to tidal to seasonal. Here, temporal and spatial dynamics of dissolved oxygen (DO), carbonate chemistry, and net ecosystem metabolism (NEM) were quantified from spring through fall in multiple, distinct, temperate estuarine habitats: seagrass meadows, salt marshes, an open water estuary, and a shallow water habitat dominated by benthic macroalgae. DO and pHT (total scale) measurements were made via high frequency sensor arrays coupled with discrete measurements of dissolved inorganic carbon (DIC) and high-resolution spatial mapping was used to document intra-habitat spatial variability. All habitats displayed clear diurnal patterns of pHT and DO that were stronger than tidal signals, with minimums and maximums observed during early morning and afternoon, respectively. Diel ranges in pHT and DO varied by site. In seagrass meadows and the open estuarine site, pHT ranged 7.8–8.4 and 7.5–8.2, respectively, while DO exceeded hypoxic thresholds and aragonite was typically saturated (ΩAr > 1). Conversely, pHT in a shallow macroalgal and salt marsh dominated habitats exhibited strong diel oscillations in pHT (6.9–8.4) with diel acidic (pHT < 7) and hypoxic (DO < 3 mg L–1) conditions often observed during summer along with extended periods of aragonite undersaturation (ΩAr < 1). The partial pressure of carbon dioxide (pCO2) exceeded 3000 and 2000 μatm in the salt marsh and macroalgal bed, respectively, while pCO2 never exceeded 1000 μatm in the seagrass and open estuarine site. Mesoscale (50–100 m) spatial variability was observed across sites with the lowest pHT and DO found within regions of more restricted flow. NEM across habitats ranged from net autotrophic (macroalgae and seagrass) to metabolically balanced (open water) and net heterotrophic (salt marsh). Each habitat exhibited distinct buffering capacities, varying seasonally, and modulated by adjacent biological activity and variations in total alkalinity (TA) and DIC. As future predicted declines in pH and DO are likely to shrink the spatial extent of estuarine refuges from acidification and hypoxia, efforts are required to expand seagrass meadows and the aquaculture of macroalgae to maximize their ecosystem benefits and maintain these estuarine refuges.


2021 ◽  
Author(s):  
Dimitar Berov ◽  
Stefania Klayn ◽  
Diana Deyanova ◽  
Ventzislav Karamfilov

The current distribution of Zostera spp. seagrass meadows along the Bulgarian Black Sea coast was studied. We used a combination of historical and recent observations of the habitat along the studied coastline. Remote sensing data (satellite images, sonar side-scans) was groundtruthed with georeferenced drop camera observations, scuba diving sampling and georeferenced scuba diving photo and video transects. Тhe total area of the habitat type ‘MB548 - Black Sea seagrass meadows on lower infralittoral sands’ (EUNIS habitat type list 2019) in the study area is 916.9 ha, of which only 17.9 ha are in man-made sheltered environments (harbours). All seagrass meadows identified in 1978-79 were also located during the current survey, despite the increased eutrophication pressure and overall degradation of benthic habitats in the W Black Sea during the 1980s and early 1990s.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3416
Author(s):  
Annelore Bezzi ◽  
Giulia Casagrande ◽  
Saverio Fracaros ◽  
Davide Martinucci ◽  
Simone Pillon ◽  
...  

While beach erosion and sand loss are typically of great concern to the tourism industry, managing rapid morphological changes linked to large amounts of moving sediments is the challenge facing Grado, an important seaside resort in the northern Adriatic, Italy. The cause of the unusual management conflict is the presence of the Mula di Muggia Bank, a nearshore depositional system made up of relict and active migrating sandbanks extending up to 2 km seawards from the touristic beachfront. A reconstruction of the morpho-sedimentary evolution of the coastal system over a 200-year period was done using a large dataset which includes historical cartography, topographic maps, aerial photos and topo-bathymetric surveys. The results show the growth of a significant urban development aimed at creating a tourist destination by occupying the waterfront along fetch-limited coastal tracts with very shallow water and scarce hydrodynamics. Furthermore, a number of sandy dynamic landforms (longshore migrating bars, a bypass corridor, an ebb-tidal delta) and accumulation zones attest to a sediment excess which can be mostly attributed to the eastern river supplies. The progressive constant migration rate of 12.6 my−1 allowed the bank to induce the expansion of the low-energy silty backbarrier environment, characterised by abundant seagrass meadows a short distance directly in front of the tourist beaches of Grado. As a result of historical analysis and more current observations, areas with diverse morphosedimentary features and with varying tourist/recreational, ecological, and conservation values have been identified. These can be considered as basic units for future accurate planning and re-evaluation of coastal management choices to balance environmental protection and tourist use. A soft coastal defence approach is proposed which includes either the preservation of specific environments or the proper use of excess sand for beach nourishment via periodic dredging or sediment bypassing.


Sign in / Sign up

Export Citation Format

Share Document