Evaluating heat tolerance of a complete set of wheat-Aegilops geniculata chromosome addition lines

2018 ◽  
Vol 204 (6) ◽  
pp. 588-593
Author(s):  
A. Green ◽  
B. Friebe ◽  
P. V. V. Prasad ◽  
A. Fritz
Genome ◽  
1999 ◽  
Vol 42 (3) ◽  
pp. 374-380 ◽  
Author(s):  
Bernd R Friebe ◽  
Neal A Tuleen ◽  
Bikram S Gill

The production and identification of a complete set of intact Aegilops geniculata chromosome and telosome additions to common wheat is described. All Ug and Mg genome chromosomes were tentatively assigned to their homoeologous groups based on C-banding, meiotic metaphase I pairing analyses and plant morphologies. Thirteen disomic and one monosomic wheat-Ae. geniculata chromosome additions were identified. Furthermore, two monotelosomic (MtA7UgL, MtA7MgL) and nine ditelosomic (DtA1UgS, DtA1UgL, DtA2UgS, DtA1MgL, DtA2MgL, DtA3MgS, DtA5MgS, DtA6MgL, DtA7MgS) wheat-Ae. geniculata additions were recovered. C-banding and meiotic pairing analyses revealed that all added Ug and Mg genome chromosomes are structurally unaltered compared to the Ae. geniculata parent accession. Chromosome 4Mg has a strong gametocidal gene that, when transferred to wheat, causes extensive chromosome breakage mainly in gametes lacking it. The relationships of Ae. geniculata chromosomes with those of the diploid progenitor species and derived polyploids is discussed.Key words: Triticum aestivum, Aegilops geniculata, chromosome addition lines, C-banding, genome evolution.


Genome ◽  
1996 ◽  
Vol 39 (2) ◽  
pp. 272-276 ◽  
Author(s):  
B. Friebe ◽  
E. D. Badaeva ◽  
B. S. Gill ◽  
N. A. Tuleen

C-banded karyotypes of a complete set of 14 Triticum peregrinum whole chromosome addition lines and 25 telosomic addition lines are reported. The added T. peregrinum chromosomes were not structurally rearranged compared with the corresponding chromosomes of the donor accession. Comprehensive karyotypic analysis confirmed Triticum umbellulatum as the donor species of the Uv genome and identified Triticum longissimum as the donor species of the Sv genome of T. peregrinum. Neither the Uv nor Sv genome chromosomes of the T. peregrinum accession showed large modifications when compared with the ancestral U and S1 genomes. Key words : Triticum aestivum, Triticum peregrinum, Triticum umbellulatum, Triticum longissimum, chromosome addition lines, C-banding.


2000 ◽  
Vol 101 (1-2) ◽  
pp. 51-58 ◽  
Author(s):  
B. Friebe ◽  
L. L. Qi ◽  
S. Nasuda ◽  
P. Zhang ◽  
N. A. Tuleen ◽  
...  

Euphytica ◽  
2007 ◽  
Vol 162 (1) ◽  
pp. 117-128 ◽  
Author(s):  
H. Budahn ◽  
O. Schrader ◽  
H. Peterka

Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 327-339 ◽  
Author(s):  
O Riera-Lizarazu ◽  
M I Vales ◽  
E V Ananiev ◽  
H W Rines ◽  
R L Phillips

Abstract In maize (Zea mays L., 2n = 2x = 20), map-based cloning and genome organization studies are often complicated because of the complexity of the genome. Maize chromosome addition lines of hexaploid cultivated oat (Avena sativa L., 2n = 6x = 42), where maize chromosomes can be individually manipulated, represent unique materials for maize genome analysis. Maize chromosome addition lines are particularly suitable for the dissection of a single maize chromosome using radiation because cultivated oat is an allohexaploid in which multiple copies of the oat basic genome provide buffering to chromosomal aberrations and other mutations. Irradiation (gamma rays at 30, 40, and 50 krad) of a monosomic maize chromosome 9 addition line produced maize chromosome 9 radiation hybrids (M9RHs)—oat lines possessing different fragments of maize chromosome 9 including intergenomic translocations and modified maize addition chromosomes with internal and terminal deletions. M9RHs with 1 to 10 radiation-induced breaks per chromosome were identified. We estimated that a panel of 100 informative M9RHs (with an average of 3 breaks per chromosome) would allow mapping at the 0.5- to 1.0-Mb level of resolution. Because mapping with maize chromosome addition lines and radiation hybrid derivatives involves assays for the presence or absence of a given marker, monomorphic markers can be quickly and efficiently mapped to a chromosome region. Radiation hybrid derivatives also represent sources of region-specific DNA for cloning of genes or DNA markers.


Sign in / Sign up

Export Citation Format

Share Document