aegilops speltoides
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 46)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Vol 25 (7) ◽  
pp. 770-777
Author(s):  
R. O. Davoyan ◽  
I. V. Bebyakina ◽  
E. R. Davoyan ◽  
Y. S. Zubanova ◽  
D. M. Boldakov ◽  
...  

The use of the gene pool of wild relatives, which have a significant reserve of genetic diversity, is of immediate interest for breeding common wheat. The creation and use of synthetic forms as “bridges” is an effective method of transferring valuable genetic material from wild relatives to cultivated wheat. For this purpose, genome addition, genome substitution and recombinant “secondary” synthetic forms have been created in the P.P. Lukyanenko National Center of Grain. The synthetic recombination form RS5 (BBAASDt ), in which the third genome consists of chromosomes of Aegilops speltoides (S) and Aegilops tauschii (Dt ), was obtained from crossing the synthetic forms Avrodes (BBAASS) and M.it./Ae. tauschii (BBAADt Dt ), in which the D genome from Ae. tauschii was added to the BBAA genomes of the durum wheat cultivar Mutico italicum. Introgression lines resistant to leaf rust, yellow rust and powdery mildew have been obtained from backcrosses with the susceptible common wheat cultivars Krasnodarskaya 99, Rostislav and Zhirovka. Twelve resistant lines that additionally have high technological characteristics of grain and flour have been selected. The cytological study (С-banding) has revealed chromosomal modifications in 6 of 8 lines under study. The rearrangements mainly affected the chromosomes of the D genome, 1D, 3D, 4D, 6D and 7D. It was found that in most cases the genetic material from the synthetic form RS5 in the studied lines was represented by substituted chromosomes from Ae. tauschii. In line 5791p17, the substitution of chromosomes 6D from Ae. tauschii and 7D from Ae. speltoides was revealed. Substitutions 4D(4Dt ), 6D(6Dt ) from Ae. tauschii and 7D(7S) from Ae. speltoides were obtained for the first time. Molecular analysis of 12 lines did not reveal effective leaf rust resistance genes, presumably present in synthetic forms of M.it./Ae. tauschii and Avrodes. It is assumed that the lines may carry previously unidentified genes for fungal disease resistance, in particular for resistance to leaf rust, from Ae. tauschii and Ae. speltoides.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2294
Author(s):  
Juan M. González ◽  
Rodrigo Cañas ◽  
Alejandra Cabeza ◽  
Magdalena Ruiz ◽  
Patricia Giraldo ◽  
...  

We analysed nine traits of the root system of 223 genotypes of Triticum turgidum (2n = 4x = AABB) subspecies dicoccoides, dicoccum, turgidum, durum and polonicum, finding a large intra and interspecific variability in both the number and size of roots, as well as in their spatial distribution. We studied the presence of an incomplete MITE (Miniature Inverted-repeat Transposable Element) inserted in the TtDro1B gene, which is present in some genotypes of dicoccoides, dicoccum, and turgidum, but not in polonicum and the 97.9% of the durum accessions. Comparison between genotypes shows that genotypes with the MITE element have smaller and shallower roots. Since Aegilops is considered to be the donor of the wheat B genome, the presence of the same MITE element was analysed in 55 accessions of the species Aegilops speltoides, searsii, bicornis and longissima, and in no case was it detected. We propose that after the emergence of T. turgidum subsp. dicoccoides, the insertion of the MITE element probably occurred in a single plant. Subsequent domestication resulted in genotypes of dicoccum with and without the MITE element, which after selection gave rise to the subspecies turgidum, and durum and polonicum, respectively. The MITE element can be used to differentiate turgidum from the durum and polonicum with high reliability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sushmita Seni ◽  
Satinder Kaur ◽  
Palvi Malik ◽  
Inderjit Singh Yadav ◽  
Parul Sirohi ◽  
...  

AbstractWheat, one of the major cereal crops worldwide, get adversely affected by rising global temperature. We have identified the diploid B genome progenitor of wheat, Aegilops speltoides (SS), as a potential donor for heat stress tolerance. Therefore, the present work was planned to study the total transcriptome profile of heat stress-tolerant Ae. speltoides accession pau3809 (AS3809) and compare with that of tetraploid and hexaploid wheat cultivars PDW274 and PBW725, respectively. The comparative transcriptome was utilized to identify and validate heat stress transcription factors (HSFs), the key genes involved in imparting heat stress tolerance. Transcriptome analysis led to the identification of a total of 74 K, 68 K, and 76 K genes in AS3809, PDW274, and PBW725, respectively. There was a high uniformity of GO profiles under the biological, molecular, and cellular functions across the three wheat transcriptomes, suggesting the conservation of gene function. Twelve HSFs having the highest FPKM value were identified in the AS3809 transcriptome data, while six of these HSFs namely HSFA3, HSFA5, HSFA9, HSFB2a, HSFB2b, and HSFC1b, were validated with qRT PCR. These six HSFs were identified as an important component of thermotolerance in AS3809 as evident from their comparative higher expression under heat stress.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1992
Author(s):  
Hafid Aberkane ◽  
Ahmed Amri ◽  
Bouchra Belkadi ◽  
Abdelkarim Filali-Maltouf ◽  
Jan Valkoun ◽  
...  

Durum wheat (Triticum turgidum subsp. durum) is mostly grown in Mediterranean type environments, characterized by unpredictable rainfall amounts and distribution, heat stress, and prevalence of major diseases and pests, all to be exacerbated with climate change. Pre-breeding efforts transgressing adaptive genes from wild relatives need to be strengthened to overcome these abiotic and biotic challenges. In this study, we evaluated the yield stability of 67 lines issued from interspecific crosses of Cham5 and Haurani with Triticum dicoccoides, T. agilopoides, T. urartu, and Aegilops speltoides, grown under 15 contrasting rainfed and irrigated environments in Morocco, and heat-prone conditions in Sudan. Yield stability was assessed using parametric (univariate (e.g., Bi, S2di, Pi etc) and multivariate (ASV, SIPC)) and non-parametric (Si1, Si2, Si3 and Si6) approaches. The combined analysis of variance showed the highly significant effects of genotypes, environments, and genotype-by-environment interaction (GEI). The environments varied in yield (1370–6468 kg/ha), heritability (0.08–0.9), and in their contribution to the GEI. Several lines derived from the four wild parents combined productivity and stability, making them suitable for unpredictable climatic conditions. A significant advantage in yield and stability was observed in Haurani derivatives compared to their recurrent parent. Furthermore, no yield penalty was observed in many of Cham5 derivatives; they had improved yield under unfavorable environments while maintaining the high yield potential from the recurrent parent (e.g., 142,026 and 142,074). It was found that a limited number of backcrosses can produce high yielding/stable germplasm while increasing diversity in a breeding pipeline. Comparing different stability approaches showed that some of them can be used interchangeably; others can be complementary to combine broad adaption with higher yield.


2021 ◽  
Author(s):  
Sushmita Seni ◽  
Satinder Kaur ◽  
Palvi Malik ◽  
Inderjit Singh Yadav ◽  
Parul Sirohi ◽  
...  

Abstract Wheat, one of the major cereal crops worldwide, get adversely affected by rising global temperature. We have identified the diploid B genome progenitor of wheat, Aegilops speltoides (SS), as a potential donor for heat stress tolerance. Therefore, the objective of the present work was to study the total transcriptome profile of Ae. speltoides accession pau3809 and compare with that of tetraploid and hexaploid wheat cultivars PDW274 and PBW725, respectively. The comparative transcriptome was utilized to identify and validate heat stress transcription factors (HSFs), the key genes involved in imparting heat stress tolerance. Transcriptome analysis led to the identification of a total of 74K, 68K, and 76K genes in AS3809, PDW274, and PBW725, respectively. There was a high uniformity of GO profiles under the biological, molecular, and cellular functions across the three wheat transcriptomes, suggesting the conservation of gene function. Twelve HSFs with the highest FPKM value in the Ae. speltoides transcriptome data were selected and six of these HSFs namely HSFA3, HSFA5, HSFA9, HSFB2a, HSFC1b, and HSFB2b were validated with qRT PCR. These six HSFs were identified as an important component of thermotolerance in Ae. speltoides as evident from their comparative higher expression under heat stress.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 703
Author(s):  
Igor Kushnirenko ◽  
Ekaterina Shreyder ◽  
Nadezhda Bondarenko ◽  
Ekaterina Shaydayuk ◽  
Nadezhda Kovalenko ◽  
...  

The southern Ural is consistently among the 10 best regions in Russia for agricultural production, including wheat. Breeding in the Chelyabinsk Research Institute of Agriculture aims to develop wheat cultivars genetically protected from the main diseases (leaf and stem rust, septoria leaf blotch and tan spot). The genes for resistance to leaf rust, Lr1, Lr9, Lr10 and Lr26/Sr31, alone or in combination, are widespread in cultivars grown in the southern Ural. In 2012, a new wheat cultivar, Chelyaba 75, was proposed for commercial production in the southern Ural, being highly resistant to leaf rust with the highly effective genes LrSp and SrSp transferred from the cuckoo line with the genetic material Aegilops speltoides. Isolates virulent to cv. Chelyaba 75 were not found in Russian populations of Puccinia triticina. Additionally, for a long period, genes Lr29, Lr 41, Lr42, Lr45, Lr47, Lr50, Lr51, Lr53 and Lr57 were characterized by high efficiency. Virulence frequencies to other Lr genes vary annually, but no races with new virulence have been identified. The resistance of lines with the Sr31 and Sr24 genes indicates that the Puccinia graminis population does not contain genotypes with the potentially damaging race Ug99. Mixed septoria and tan spot infections occurred in the southern Ural, with the latter dominating. Races producing the exotoxin ToxA are widely distributed in Pyrenophora tritici-repentis populations. Two causal agents of septoria leaf blotch (Parastagonospora nodorum and P. avenae f. sp. tritici) occur in the region, with the first dominating. Aggressiveness of P. nodorum isolates to wheat cultivars was higher than that of P. avenae f. sp. tritici. All Parastagonospora isolates showed the presence of the SnTox3 marker. SnToxA and SnTox1 markers were found in P. nodorum isolates, usually separately, but in one isolate, these genes were found together. The analysis of the genetic diversity of wheat cultivars grown in the southern Ural, and the pathogenic complex present, indicate that pathogens continuously evolve under the influence of the host plant.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jashanpreet Kaur ◽  
Jaspal Kaur ◽  
Guriqbal Singh Dhillon ◽  
Harmandeep Kaur ◽  
Jasvir Singh ◽  
...  

Spot blotch (SB) of wheat is emerging as a major threat to successful wheat production in warm and humid areas of the world. SB, also called leaf blight, is caused by Bipolaris sorokiniana, and is responsible for high yield losses in Eastern Gangetic Plains Zone in India. More recently, SB is extending gradually toward cooler, traditional wheat-growing North-Western part of the country which is a major contributor to the national cereal basket. Deployment of resistant cultivars is considered as the most economical and ecologically sound measure to avoid losses due to this disease. In the present study, 89 backcross introgression lines (DSBILs) derived from Triticum durum (cv. PDW274-susceptible) × Aegilops speltoides (resistant) were evaluated against SB for four consecutive years, 2016–2020. Phenotypic evaluation of these lines showed a continuous variation in disease severity indicating that the resistance to SB is certainly quantitative in nature. Phenotypic data of DSBILs were further used for mapping QTLs using SNPs obtained by genotyping by sequencing. To identify QTLs stable across the environments, Best Linear Unbiased Estimates (BLUEs) and Predictions (BLUPs) were used for mapping QTLs based on stepwise regression-based Likelihood Ratio Test (RSTEP-LRT) for additive effect of markers and single marker analysis (SMA). Five QTLs, Q.Sb.pau-2A, Q.Sb.pau-2B, Q.Sb.pau-3B, Q.Sb.pau-5B, and Q.Sb.pau-6A, linked to SB resistance were mapped across chromosomes 2A, 2B, 3B, 5B, and 6A. Genes found adjacent to the SNP markers linked to these QTLs were literature mined to identify possible candidate genes by studying their role in plant pathogenesis. Further, highly resistant DSBIL (DSBIL-13) was selected to cross with a susceptible hexaploidy cultivar (HD3086) generating BC2F1 population. The QTL Q.Sb.pau-5B, linked to SNP S5B_703858864, was validated on this BC2F1 population and thus, may prove to be a potential diagnostic marker for SB resistance.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xu Zhang ◽  
Wenrui Wang ◽  
Cheng Liu ◽  
Shanying Zhu ◽  
Huiming Gao ◽  
...  

Wheat powdery mildew is a devastating disease that seriously threatens yield worldwide. Utilization of host resistance is considered an effective strategy to minimize powdery mildew damage. Pm21, PmV, and Pm12 confer broad-spectrum resistance to wheat powdery mildew in China, of which Pm21 and PmV are allelic genes derived from the 6VS chromosome of Dasypyrum villosum, and Pm12 is derived from the 6SS chromosome of Aegilops speltoides and most likely orthologous to the former two genes. To accurately and efficiently transfer and pyramid these genes using marker-assisted selection (MAS), distinctive single nucleotide polymorphisms (SNPs) among the exon sequences of Pm21, PmV, and Pm12 and their homologous sequences in the common wheat genome were identified and used for developing diagnostic Kompetitive Allele-Specific PCR (KASP) markers. The markers were validated in different genotypes including transgenic vectors, transgenic lines, translocation lines, resistance stocks with documented Pm genes, and in multiple susceptible cultivars without Pm genes. As a result, we initially developed a KASP marker that can simultaneously diagnose Pm21, Pm12, and PmV. Subsequently, we obtained a highly diagnostic KASP marker for each of the three genes that could distinguish among the three genes and also accurately distinguish them from other resistant stocks with documented Pm genes and from multiple susceptible genotypes. Compared with previously reported markers, the highly diagnostic KASP markers developed in this study have the advantages of low cost, easy assay, accuracy, and potentially high throughput for MAS.


Author(s):  
Людмила Александровна Марченкова ◽  
Инна Федоровна Лапочкина ◽  
Ольга Викторовна Павлова ◽  
Наиль Рифкатович Гайнуллин ◽  
Раиса Федоровна Чавдарь ◽  
...  

Оценены адаптивные свойства новых селекционных линий озимой мягкой пшеницы, созданных в ФИЦ «Немчиновка» (Московская область) с использованием донорских линий и сортообразцов, устойчивых к стеблевой ржавчине и имеющих в родословной генетический материал видов Aegilops speltoides, Ae. triuncialis, Triticum kiharae, Secale cereale и T. migushovae. Протестировано 14 линий с комплексом хозяйственно полезных признаков: урожайностью на уровне стандартного сорта Московская 39, ранним выколашиванием, коротким стеблем, крупным зерном и массой зерна с колоса. Работа проведена в лабораторных условиях в фазе проростков на фонах искусственно моделируемых абиотических стрессов — затопления семян, засоления хлоридом натрия, закисления сульфатом алюминия с целью отбора форм с высокой защитно-приспособительной реакцией на действие токсичности. В качестве диагностического признака применяли интенсивность ростовых процессов проростков и зародышевых корней. Определяли адаптивность по индексу устойчивости, который дает комплексную оценку общей устойчивости к стрессам. Установлено, что самое вредоносное воздействие на линии мягкой пшеницы оказывает анаэробный стресс, а наименьшее — кислотный. Выделены линии с наиболее высоким уровнем устойчивости: к хлориду натрия — 9-19w, 20-19w, 37-19w, к сульфату алюминия — 36-19w, 35-19w, 2-19w, к затоплению — 37-19w, 32-19w и 16-19w. Отобраны 3 генотипа с высокой комплексной адаптивностью ко всем стресс-факторам — 9-19w, 37-19w и 32-19w.


Sign in / Sign up

Export Citation Format

Share Document