chromosome addition lines
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 2)

H-INDEX

26
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Mahmoud Said ◽  
Katerina Holušová ◽  
András Farkas ◽  
László Ivanizs ◽  
Eszter Gaál ◽  
...  

Breeding of agricultural crops adapted to climate change and resistant to diseases and pests is hindered by a limited gene pool because of domestication and thousands of years of human selection. One way to increase genetic variation is chromosome-mediated gene transfer from wild relatives by cross hybridization. In the case of wheat (Triticum aestivum), the species of genus Aegilops are a particularly attractive source of new genes and alleles. However, during the evolution of the Aegilops and Triticum genera, diversification of the D-genome lineage resulted in the formation of diploid C, M, and U genomes of Aegilops. The extent of structural genome alterations, which accompanied their evolution and speciation, and the shortage of molecular tools to detect Aegilops chromatin hamper gene transfer into wheat. To investigate the chromosome structure and help develop molecular markers with a known physical position that could improve the efficiency of the selection of desired introgressions, we developed single-gene fluorescence in situ hybridization (FISH) maps for M- and U-genome progenitors, Aegilops comosa and Aegilops umbellulata, respectively. Forty-three ortholog genes were located on 47 loci in Ae. comosa and on 52 loci in Ae. umbellulata using wheat cDNA probes. The results obtained showed that M-genome chromosomes preserved collinearity with those of wheat, excluding 2 and 6M containing an intrachromosomal rearrangement and paracentric inversion of 6ML, respectively. While Ae. umbellulata chromosomes 1, 3, and 5U maintained collinearity with wheat, structural reorganizations in 2, 4, 6, and 7U suggested a similarity with the C genome of Aegilops markgrafii. To develop molecular markers with exact physical positions on chromosomes of Aegilops, the single-gene FISH data were validated in silico using DNA sequence assemblies from flow-sorted M- and U-genome chromosomes. The sequence similarity search of cDNA sequences confirmed 44 out of the 47 single-gene loci in Ae. comosa and 40 of the 52 map positions in Ae. umbellulata. Polymorphic regions, thus, identified enabled the development of molecular markers, which were PCR validated using wheat-Aegilops disomic chromosome addition lines. The single-gene FISH-based approach allowed the development of PCR markers specific for cytogenetically mapped positions on Aegilops chromosomes, substituting as yet unavailable segregating map. The new knowledge and resources will support the efforts for the introgression of Aegilops genes into wheat and their cloning.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Offiong U. Edet ◽  
Yasir S. A. Gorafi ◽  
Seong-woo Cho ◽  
Masahiro Kishii ◽  
Hisashi Tsujimoto

2015 ◽  
Vol 66 (1) ◽  
pp. 32
Author(s):  
Caiyun Liu ◽  
Zhiyuan Yang ◽  
Xiaojie Chen ◽  
Hisashi Tsujimoto ◽  
Yin-Gang Hu

Wheat alien chromosome addition lines possess abundant genetic resources and they are usually used for transferring desired genes or traits into wheat. The screening and characterisation of addition lines for target traits is one of the prerequisites for efficient utilisation of the alien chromosomes. In order to understand the properties and potential utilisation of wheat addition lines, the effects of additional chromosomes on agronomic and photosynthetic traits of common wheat were evaluated using 34 addition lines with the same genetic background of Chinese Spring. The results showed that most of the alien chromosomes decreased plant height (61.8%) and grain number per spike (47.1%), whereas some increased spike length and tiller number. Alien chromosomes of Agropyron intermedium G, Elymus trachycaulus T5HL5HL, El. trachycaulus 5SS and Haynaldia villosa 1V performed well in improving yield components. None of the alien chromosomes studied had negative effects on photosynthetic traits. Higher net photosynthetic rates were observed in Aegilops umbellulata 5U, El. trachycaulus 5H and rye 1R addition lines. Regarding seedling traits, 21 lines (61.8%) showed improvement in different root traits, whereas 26.5% of the chromosomes decreased coleoptile length. Addition lines with better performance for some specific traits were identified and discussed.


Nematology ◽  
2014 ◽  
Vol 16 (10) ◽  
pp. 1119-1127
Author(s):  
Shaosong Zhang ◽  
Edgar Schliephake ◽  
Holger Budahn

Root-knot nematodes cause severe damage to a great number of crops worldwide. The use of nematicides is restricted due to environmental and toxicological risks and control of the pest by crop rotation is difficult because root-knot nematodes have a very wide range of host plants. To verify the strategy of converting rapeseed from a tolerant host for Meloidogyne incognita and M. javanica to a resistant catch crop, a complete set of nine disomic rapeseed-radish chromosome addition lines (lines A to I) was tested for resistance against these Meloidogyne species. Thirty plants of each addition line and the rapeseed and radish parents as control were infected with 2500 second-stage juveniles per plant. The presence of the alien radish chromosome was confirmed by chromosome-specific microsatellite markers. After cultivation of the inoculated plants for 10 weeks in a climatic chamber the root systems were washed. The egg masses were stained with Cochenille Red and counted. The radish parent A24 was found to be resistant to M. incognita (2.4 egg masses (g root)−1) and M. javanica (0.4 egg masses (g root)−1) compared to 53.3 and 33.1 egg masses (g root)−1 for the susceptible rapeseed parent cv. Madora. The radish chromosome e was shown to be the carrier of radish root-knot nematode resistance with an average number of <1 egg mass (g root)−1 for M. incognita and M. javanica. The disomic addition lines B, C, D, G, H and I and the parental radish line A107 were classified as highly susceptible, whereas the addition lines A and F showed significantly reduced susceptibility for M. incognita but not for M. javanica. To our knowledge this is the first study on resistance effects of individual radish chromosomes in a rapeseed background against these root-knot nematodes.


Sign in / Sign up

Export Citation Format

Share Document