chromosome addition
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 1)

H-INDEX

28
(FIVE YEARS 0)

Author(s):  
Vicky Roslinsky ◽  
Kevin C. Falk ◽  
Roman Gaebelein ◽  
Annaliese S. Mason ◽  
Christina Eynck

Abstract Key message Disomic alien chromosome addition Brassica carinata lines with super-high erucic acid content were developed through interspecific hybridization with B. juncea and characterized using molecular, cytological and biochemical techniques. Abstract Brassica carinata [A.] Braun (BBCC, 2n = 34) is a climate-resilient oilseed. Its seed oil is high in erucic acid (> 40%), rendering it well suited for the production of biofuel and other bio-based applications. To enhance the competitiveness of B. carinata with high erucic B. napus (HEAR), lines with super-high erucic acid content were developed through interspecific hybridization. To this end, a fad2B null allele from Brassica juncea (AABB, 2n = 36) was introgressed into B. carinata, resulting in a B. carinata fad2B mutant with erucic acid levels of over 50%. Subsequently, the FAE allele from B. rapa spp. yellow sarson (AA, 2n = 20) was transferred to the fad2B B. carinata line, yielding lines with erucic acid contents of up to 57.9%. Molecular analysis using the Brassica 90 K Illumina Infinium™ SNP genotyping array identified these lines as disomic alien chromosome addition lines, with two extra A08 chromosomes containing the BrFAE gene. The alien chromosomes from B. rapa were clearly distinguished by molecular cytogenetics in one of the addition lines. Analysis of microspore-derived offspring and hybrids from crosses with a CMS B. carinata line showed that the transfer rate of the A08 chromosome into male gametes was over 98%, resulting in almost completely stable transmission of an A08 chromosome copy into the progeny. The increase in erucic acid levels was accompanied by changes in the proportions of other fatty acids depending on the genetic changes that were introduced in the interspecific hybrids, providing valuable insights into erucic acid metabolism in Brassica.



2020 ◽  
Vol 21 (18) ◽  
pp. 6958
Author(s):  
Katarzyna Juzoń ◽  
Dominika Idziak-Helmcke ◽  
Magdalena Rojek-Jelonek ◽  
Tomasz Warzecha ◽  
Marzena Warchoł ◽  
...  

The oat × maize chromosome addition (OMA) lines, as hybrids between C3 and C4 plants, can potentially help us understand the process of C4 photosynthesis. However, photosynthesis is often affected by adverse environmental conditions, including drought stress. Therefore, to assess the functioning of the photosynthetic apparatus in OMA lines under drought stress, the chlorophyll content and chlorophyll a fluorescence (CF) parameters were investigated. With optimal hydration, most of the tested OMA lines, compared to oat cv. Bingo, showed higher pigment content, and some of them were characterized by increased values of selected CF parameters. Although 14 days of drought caused a decrease of chlorophylls and carotenoids, only slight changes in CF parameters were observed, which can indicate proper photosynthetic efficiency in most of examined OMA lines compared to oat cv. Bingo. The obtained data revealed that expected changes in hybrid functioning depend more on the specific maize chromosome and its interaction with the oat genome rather than the number of retained chromosomes. OMA lines not only constitute a powerful tool for maize genomics but also are a source of valuable variation in plant breeding, and can help us to understand plant susceptibility to drought. Our research confirms more efficient functioning of hybrid photosynthetic apparatus than oat cv. Bingo, therefore contributes to raising new questions in the fields of plant physiology and biochemistry. Due to the fact that the oat genome is not fully sequenced yet, the mechanism of enhanced photosynthetic efficiency in OMA lines requires further research.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mostafa Abdelrahman ◽  
Sho Hirata ◽  
Yuji Sawada ◽  
Masami Yokota Hirai ◽  
Shusei Sato ◽  
...  




2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Offiong U. Edet ◽  
Yasir S. A. Gorafi ◽  
Seong-woo Cho ◽  
Masahiro Kishii ◽  
Hisashi Tsujimoto


2018 ◽  
Vol 204 (6) ◽  
pp. 588-593
Author(s):  
A. Green ◽  
B. Friebe ◽  
P. V. V. Prasad ◽  
A. Fritz




2017 ◽  
Vol 284 (1869) ◽  
pp. 20172062 ◽  
Author(s):  
Alan T. Branco ◽  
Rute M Brito ◽  
Bernardo Lemos

Y chromosomes typically harbour a small number of genes and an abundance of repetitive sequences. In Drosophila, the Y chromosome comprises multimegabase long segments of repetitive DNA and a handful of protein-coding genes. In mammals, the Y chromosome also harbours a disproportionally high abundance of repeats. Here, we built on a Drosophila melanogaster model in which the Y chromosome is decoupled from sexual determination. Genotypes were genetically identical for the autosomes, X chromosome, and mitochondria, but differ by the presence or dose of the Y chromosome. Addition of an extra Y chromosome had limited impact in males. However, the presence of a Y chromosome in females induced a disproportionate response in genes expressed in the ovaries as well as genes encoded by the mitochondrial genome. Furthermore, the data revealed significant consequences of Y chromosome presence in larvae neuronal tissue. This included the repression of genes implicated in reproductive behaviour, courtship, mating and synaptic function. Our findings exhibit the Y chromosome as a hotspot for sex-specific adaptation. They suggest roles for natural selection on Y-linked genetic elements exerting impact on sex-specific tissues as well as somatic tissues shared by males and females.



2017 ◽  
Vol 44 (4) ◽  
pp. 400 ◽  
Author(s):  
Dennis Konnerup ◽  
A. l. Imran Malik ◽  
A. K. M. R. Islam ◽  
Timothy David Colmer

Hordeum marinum Huds. is a waterlogging-tolerant wild relative of wheat (Triticum aestivum L.). Greater root porosity (gas volume per root volume) and formation of a barrier to reduce root radial O2 loss (ROL) contribute to the waterlogging tolerance of H. marinum and these traits are evident in some H. marinum–wheat amphiploids. We evaluated root porosity, ROL patterns and tolerance to hypoxic stagnant conditions for 10 various H. marinum (two accessions) disomic chromosome addition (DA) lines in wheat (two varieties), produced from two H. marinum–wheat amphiploids and their recurrent wheat parents. None of the DA lines had a barrier to ROL or higher root porosity than the wheat parents. Lack of a root ROL barrier in the six DA lines for H. marinum accession H21 in Chinese Spring (CS) wheat indicates that the gene(s) for this trait do not reside on one of these six chromosomes; unfortunately, chromosome 3 of H. marinum has not been isolated in CS. Unlike the H21–CS amphiploid, which formed a partial ROL barrier in roots, the H90–Westonia amphiploid and the four derived DA lines available did not. The unaltered root aeration traits in the available DA lines challenge the strategy of using H. marinum as a donor of these traits to wheat.



Sign in / Sign up

Export Citation Format

Share Document