Author response for "Hidden genetic variance contributes to increase the short‐term adaptive potential of selfing populations"

Author(s):  
Josselin Clo ◽  
Joëlle Ronfort ◽  
Diala Abu Awad
2019 ◽  
Author(s):  
Josselin Clo ◽  
Joëlle Ronfort ◽  
Diala Abu Awad

Standing genetic variation is considered a major contributor to the adaptive potential of species. The low heritable genetic variation observed in self-fertilising populations has led to the hypothesis that species with this mating system would be less likely to adapt. However, a non-negligible amount of cryptic genetic variation for polygenic traits, accumulated through negative linkage disequilibrium, could prove to be an important source of standing variation in self-fertilising species. To test this hypothesis we simulated populations under stabilizing selection subjected to an environmental change. We demonstrate that, when the mutation rate is high (but realistic), selfing populations are better able to store genetic variance than outcrossing populations through genetic associations, notably due to the reduced effective recombination rate associated with predominant selfing. Following an environmental shift, this diversity can be partially remobilized, which increases the additive variance and adaptive potential of predominantly (but not completely) selfing populations. In such conditions, despite initially lower observed genetic variance, selfing populations adapt as readily as outcrossing ones within a few generations. For low mutation rates, purifying selection impedes the storage of diversity through genetic associations, in which case, as previously predicted, the lower genetic variance of selfing populations results in lower adaptability compared to their outcrossing counterparts. The population size and the mutation rate are the main parameters to consider, as they are the best predictors of the amount of stored diversity in selfing populations. Our results and their impact on our knowledge of adaptation under high selfing rates are discussed.


Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1961-1974 ◽  
Author(s):  
Ming Wei ◽  
Armando Caballero ◽  
William G Hill

Formulae were derived to predict genetic response under various selection schemes assuming an infinitesimal model. Account was taken of genetic drift, gametic (linkage) disequilibrium (Bulmer effect), inbreeding depression, common environmental variance, and both initial segregating variance within families (σAW02) and mutational (σM2) variance. The cumulative response to selection until generation t(CRt) can be approximated asCRt≈R0[t−β(1−σAW∞2σAW02)t24Ne]−Dt2Ne,where Ne is the effective population size, σAW∞2=NeσM2 is the genetic variance within families at the steady state (or one-half the genic variance, which is unaffected by selection), and D is the inbreeding depression per unit of inbreeding. R  0 is the selection response at generation 0 assuming preselection so that the linkage disequilibrium effect has stabilized. β is the derivative of the logarithm of the asymptotic response with respect to the logarithm of the within-family genetic variance, i.e., their relative rate of change. R  0 is the major determinant of the short term selection response, but σM2, Ne and β are also important for the long term. A selection method of high accuracy using family information gives a small Ne and will lead to a larger response in the short term and a smaller response in the long term, utilizing mutation less efficiently.


Sign in / Sign up

Export Citation Format

Share Document