scholarly journals Large differences in leaf cuticle conductance and its temperature response among 24 tropical tree species from across a rainfall gradient

2021 ◽  
Author(s):  
Martijn Slot ◽  
Tantawat Nardwattanawong ◽  
Georgia G. Hernández ◽  
Amauri Bueno ◽  
Markus Riederer ◽  
...  
Ecology ◽  
2020 ◽  
Vol 101 (11) ◽  
Author(s):  
Andrew J. Muehleisen ◽  
Bettina M. J. Engelbrecht ◽  
Frank Andrew Jones ◽  
Eric Manzané‐Pinzón ◽  
Liza S. Comita

2016 ◽  
Vol 43 (5) ◽  
pp. 468 ◽  
Author(s):  
Martijn Slot ◽  
Milton N. Garcia ◽  
Klaus Winter

Tropical forests play a critical role in the global carbon cycle, but our limited understanding of the physiological sensitivity of tropical forest trees to environmental factors complicates predictions of tropical carbon fluxes in a changing climate. We determined the short-term temperature response of leaf photosynthesis and respiration of seedlings of three tropical tree species from Panama. For one of the species net CO2 exchange was also measured in situ. Dark respiration of all species increased linearly – not exponentially – over a ~30°C temperature range. The early-successional species Ficus insipida Willd. and Ochroma pyramidale (Cav. ex Lam.) Urb. had higher temperature optima for photosynthesis (Topt) and higher photosynthesis rates at Topt than the late-successional species Calophyllum longifolium Willd. The decrease in photosynthesis above Topt could be assigned, in part, to observed temperature-stimulated photorespiration and decreasing stomatal conductance (gS), with unmeasured processes such as respiration in the light, Rubisco deactivation, and changing membrane properties probably playing important additional roles, particularly at very high temperatures. As temperature increased above Topt, gS of laboratory-measured leaves first decreased, followed by an increase at temperatures >40−45°C. In contrast, gS of canopy leaves of F. insipida in the field continued to decrease with increasing temperature, causing complete suppression of photosynthesis at ~45°C, whereas photosynthesis in the laboratory did not reach zero until leaf temperature was ~50°C. Models parameterised with laboratory-derived data should be validated against field observations when they are used to predict tropical forest carbon fluxes.


2008 ◽  
Vol 10 (4) ◽  
pp. 1001-1004 ◽  
Author(s):  
Marcela Corbo Guidugli ◽  
Tatiana de Campos ◽  
Adna Cristina Barbosa de Sousa ◽  
Juliana Massimino Feres ◽  
Alexandre Magno Sebbenn ◽  
...  

2008 ◽  
Vol 68 (4) ◽  
pp. 781-793 ◽  
Author(s):  
GM. Souza ◽  
RV. Ribeiro ◽  
AM. Sato ◽  
MS. Oliveira

This study addressed some questions about how a suitable leaf carbon balance can be attained for different functional groups of tropical tree species under contrasting forest light environments. The study was carried out in a fragment of semi-deciduous seasonal forest in Narandiba county, São Paulo Estate, Brazil. 10-month-old seedlings of four tropical tree species, Bauhinia forficata Link (Caesalpinioideae) and Guazuma ulmifolia Lam. (Sterculiaceae) as light-demanding pioneer species, and Hymenaea courbaril L. (Caesalpinioideae) and Esenbeckia leiocarpa Engl. (Rutaceae) as late successional species, were grown under gap and understorey conditions. Diurnal courses of net photosynthesis (Pn) and transpiration were recorded with an open system portable infrared gas analyzer in two different seasons. Dark respiration and photorespiration were also evaluated in the same leaves used for Pn measurements after dark adaptation. Our results showed that diurnal-integrated dark respiration (Rdi) of late successional species were similar to pioneer species. On the other hand, photorespiration rates were often higher in pioneer than in late successional species in the gap. However, the relative contribution of these parameters to leaf carbon balance was similar in all species in both environmental conditions. Considering diurnal-integrated values, gross photosynthesis (Pgi) was dramatically higher in gap than in understorey, regardless of species. In both evaluated months, there were no differences among species of different functional groups under shade conditions. The same was observed in May (dry season) under gap conditions. In such light environment, pioneers were distinguished from late successional species in November (wet season), showing that ecophysiological performance can have a straightforward relation to seasonality.


Biotropica ◽  
2020 ◽  
Vol 52 (3) ◽  
pp. 415-420 ◽  
Author(s):  
Rafael Carvalho da Costa ◽  
Flavio Antonio Maës dos Santos

Sign in / Sign up

Export Citation Format

Share Document