scholarly journals Spot patterns in the 2‐D Schnakenberg model with localized heterogeneities

Author(s):  
Tony Wong ◽  
Michael J. Ward
Keyword(s):  
Author(s):  
Theodore Kolokolnikov ◽  
Michael Ward ◽  
Justin Tzou ◽  
Juncheng Wei

For a large class of reaction–diffusion systems with large diffusivity ratio, it is well known that a two-dimensional stripe (whose cross-section is a one-dimensional homoclinic spike) is unstable and breaks up into spots. Here, we study two effects that can stabilize such a homoclinic stripe. First, we consider the addition of anisotropy to the model. For the Schnakenberg model, we show that (an infinite) stripe can be stabilized if the fast-diffusing variable (substrate) is sufficiently anisotropic. Two types of instability thresholds are derived: zigzag (or bending) and break-up instabilities. The instability boundaries subdivide parameter space into three distinct zones: stable stripe, unstable stripe due to bending and unstable due to break-up instability. Numerical experiments indicate that the break-up instability is supercritical leading to a ‘spotted-stripe’ solution. Finally, we perform a similar analysis for the Klausmeier model of vegetation patterns on a steep hill, and examine transition from spots to stripes. This article is part of the theme issue ‘Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology (part 2)’.


2017 ◽  
Vol 10 (5) ◽  
pp. 1051-1062
Author(s):  
Guanqi Liu ◽  
◽  
Yuwen Wang ◽  

Author(s):  
Melissa Vellela ◽  
Hong Qian

Recent studies on stochastic oscillations mostly focus on the power spectral analysis. However, the power spectrum yields information only on the frequency of oscillation and cannot differentiate between a stable limit cycle and a stable focus. The cycle flux, introduced by Hill (Hill 1989 Free energy transduction and biochemical cycle kinetics ), is a quantitative measure of the net movement over a closed path, but it is impractical to compute for all possible cycles in systems with a large state space. Through simple examples, we introduce concepts used to quantify stochastic oscillation, such as the cycle flux, the Hill–Qian stochastic circulation and rotation number. We introduce a novel device, the Poincaré–Hill cycle map (PHCM), which combines the concept of Hill’s cycle flux with the Poincaré map from nonlinear dynamics. Applying the PHCM to a reversible extension of an oscillatory chemical system, the Schnakenberg model, reveals stable oscillations outside the Hopf bifurcation region in which the deterministic system contains a limit cycle. Bistable behaviour is found on the small volume scale with high probabilities around both the fixed point and the limit cycle. Convergence to the deterministic system is found in the thermodynamic limit.


2019 ◽  
Vol 39 (4) ◽  
pp. 1923-1955
Author(s):  
Weiwei Ao ◽  
◽  
Chao Liu
Keyword(s):  

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Guido Schneider ◽  
Matthias Winter

<p style='text-indent:20px;'>We consider reaction-diffusion systems for which the trivial solution simultaneously becomes unstable via a short-wave Turing and a long-wave Hopf instability. The Brusseletor, Gierer-Meinhardt system and Schnakenberg model are prototype biological pattern forming systems which show this kind of behavior for certain parameter regimes. In this paper we prove the validity of the amplitude system associated to this kind of instability. Our analytical approach is based on the use of mode filters and normal form transformations. The amplitude system allows us an efficient numerical simulation of the original multiple scaling problems close to the instability.</p>


Sign in / Sign up

Export Citation Format

Share Document