deterministic system
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 62)

H-INDEX

18
(FIVE YEARS 4)

Author(s):  
Rapeepong Suphanchaimat ◽  
Titiporn Tuangratananon ◽  
Nattadhanai Rajatanavin ◽  
Mathudara Phaiyarom ◽  
Warisara Jaruwanno ◽  
...  

Thailand was hit by the second wave of Coronavirus Disease 2019 (COVID-19) in a densely migrant-populated province (Samut Sakhon). COVID-19 vaccines were known to be effective; however, the supply was limited. Therefore, this study aimed to predict the effectiveness of Thailand’s COVID-19 vaccination strategy. We obtained most of the data from the Ministry of Public Health. Deterministic system dynamics and compartmental models were utilized. The reproduction number (R) between Thais and migrants was estimated at 1.25 and 2.5, respectively. Vaccine effectiveness (VE) to prevent infection was assumed at 50%. In Samut Sakhon, there were 500,000 resident Thais and 360,000 resident migrants. The contribution of migrants to the province’s gross domestic product was estimated at 20%. Different policy scenarios were analyzed. The migrant-centric vaccination policy scenario received the lowest incremental cost per one case or one death averted compared with the other scenarios. The Thai-centric policy scenario yielded an incremental cost of 27,191 Baht per one life saved, while the migrant-centric policy scenario produced a comparable incremental cost of 3782 Baht. Sensitivity analysis also demonstrated that the migrant-centric scenario presented the most cost-effective outcome even when VE diminished to 20%. A migrant-centric policy yielded the smallest volume of cumulative infections and deaths and was the most cost-effective scenario, independent of R and VE values. Further studies should address political feasibility and social acceptability of migrant vaccine prioritization.


2021 ◽  
Vol 18 (4) ◽  
pp. 0-0

To verify the composed Web services, a general view of what traits of a service need to be identified is still lacking. The existing verification model did not address any mechanism for getting alternative services if we failed to reach the desired service and partially concentrated on the reachability problem for a deterministic and non-deterministic system in sequential. This paper proposes a Synthesised Non-deterministic Turing Machine Model (SNTMM) by combining the Multistacked Non-deterministic Turing Machine (MSNTM) model and Multitaped Non-deterministic Turing Machine (MTNTM) model to verify the composed Web services for both deterministic and non-deterministic systems in parallel. The deceased transition and departed service marking algorithm have been proposed to address each participated service’s reachability in composing service for all possible input in parallel. This article shows an example to demonstrate the meticulousness of the model. The experimental results show that the performance of the proposed model is measured efficiently


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1191
Author(s):  
Colin Shea-Blymyer ◽  
Subhradeep Roy ◽  
Benjamin Jantzen

Many problems in the study of dynamical systems—including identification of effective order, detection of nonlinearity or chaos, and change detection—can be reframed in terms of assessing the similarity between dynamical systems or between a given dynamical system and a reference. We introduce a general metric of dynamical similarity that is well posed for both stochastic and deterministic systems and is informative of the aforementioned dynamical features even when only partial information about the system is available. We describe methods for estimating this metric in a range of scenarios that differ in respect to contol over the systems under study, the deterministic or stochastic nature of the underlying dynamics, and whether or not a fully informative set of variables is available. Through numerical simulation, we demonstrate the sensitivity of the proposed metric to a range of dynamical properties, its utility in mapping the dynamical properties of parameter space for a given model, and its power for detecting structural changes through time series data.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1127
Author(s):  
Yue Zhao ◽  
Lingfeng Liu

A chaotic system refers to a deterministic system with seemingly random irregular motion, and its behavior is uncertain, unrepeatable, and unpredictable. In recent years, researchers have proposed various image encryption schemes based on a single low-dimensional or high-dimensional chaotic system, but many algorithms have problems such as low security. Therefore, designing a good chaotic system and encryption scheme is very important for encryption algorithms. This paper constructs a new double chaotic system based on tent mapping and logistic mapping. In order to verify the practicability and feasibility of the new chaotic system, a displacement image encryption algorithm based on the new chaotic system was subsequently proposed. This paper proposes a displacement image encryption algorithm based on the new chaotic system. The algorithm uses an improved new nonlinear feedback function to generate two random sequences, one of which is used to generate the index sequence, the other is used to generate the encryption matrix, and the index sequence is used to control the generation of the encryption matrix required for encryption. Then, the encryption matrix and the scrambling matrix are XORed to obtain the first encryption image. Finally, a bit-shift encryption method is adopted to prevent the harm caused by key leakage and to improve the security of the algorithm. Numerical experiments show that the key space of the algorithm is not only large, but also the key sensitivity is relatively high, and it has good resistance to various attacks. The analysis shows that this algorithm has certain competitive advantages compared with other encryption algorithms.


Author(s):  
Qiong Lu ◽  
Tamás Tettamanti

In transportation modeling, after defining a road network and its origin-destination (OD) matrix, the next important question is how to assign traffic among OD-pairs. Nowadays, advanced traveler information systems (ATIS) make it possible to realize the user equilibrium solution. Simultaneously, with the advent of the Cooperative Intelligent Transport Systems (C-ITS), it is possible to solve the traffic assignment problem in a system optimum way. As a potential traffic assignment method in the future transportation system for automated cars, the deterministic system optimum (DSO) is modeled and simulated to investigate the potential changes it may bring to the existing traditional traffic system. In this paper, stochastic user equilibrium (SUE) is used to simulate the conventional traffic assignment method. This work concluded that DSO has considerable advantages in reducing trip duration, time loss, waiting time, and departure delay under the same travel demand. What is more, the SUE traffic assignment has a more dispersed vehicle density distribution. Moreover, DSO traffic assignment helps the maximum vehicle density of each alternative path arrive almost simultaneously. Furthermore, DSO can significantly reduce or avoid the occurrence of excessive congestion.


2021 ◽  
Vol 118 (34) ◽  
pp. e2023381118
Author(s):  
Carl van Vreeswijk ◽  
Farzada Farkhooi

Dendrites play an essential role in the integration of highly fluctuating input in vivo into neurons across all nervous systems. Yet, they are often studied under conditions where inputs to dendrites are sparse. The dynamic properties of active dendrites facing in vivo–like fluctuating input thus remain elusive. In this paper, we uncover dynamics in a canonical model of a dendritic compartment with active calcium channels, receiving in vivo–like fluctuating input. In a single-compartment model of the active dendrite with fast calcium activation, we show noise-induced nonmonotonic behavior in the relationship of the membrane potential output, and mean input emerges. In contrast, noise can induce bistability in the input–output relation in the system with slowly activating calcium channels. Both phenomena are absent in a noiseless condition. Furthermore, we show that timescales of the emerging stochastic bistable dynamics extend far beyond a deterministic system due to stochastic switching between the solutions. A numerical simulation of a multicompartment model neuron shows that in the presence of in vivo–like synaptic input, the bistability uncovered in our analysis persists. Our results reveal that realistic synaptic input contributes to sustained dendritic nonlinearities, and synaptic noise is a significant component of dendritic input integration.


2021 ◽  
Vol 9 ◽  
Author(s):  
Abba B. Gumel ◽  
Enahoro A. Iboi ◽  
Calistus N. Ngonghala ◽  
Gideon A. Ngwa

A novel coronavirus emerged in December of 2019 (COVID-19), causing a pandemic that inflicted unprecedented public health and economic burden in all nooks and corners of the world. Although the control of COVID-19 largely focused on the use of basic public health measures (primarily based on using non-pharmaceutical interventions, such as quarantine, isolation, social-distancing, face mask usage, and community lockdowns) initially, three safe and highly-effective vaccines (by AstraZeneca Inc., Moderna Inc., and Pfizer Inc.), were approved for use in humans in December 2020. We present a new mathematical model for assessing the population-level impact of these vaccines on curtailing the burden of COVID-19. The model stratifies the total population into two subgroups, based on whether or not they habitually wear face mask in public. The resulting multigroup model, which takes the form of a deterministic system of nonlinear differential equations, is fitted and parameterized using COVID-19 cumulative mortality data for the third wave of the COVID-19 pandemic in the United States. Conditions for the asymptotic stability of the associated disease-free equilibrium, as well as an expression for the vaccine-derived herd immunity threshold, are rigorously derived. Numerical simulations of the model show that the size of the initial proportion of individuals in the mask-wearing group, together with positive change in behavior from the non-mask wearing group (as well as those in the mask-wearing group, who do not abandon their mask-wearing habit) play a crucial role in effectively curtailing the COVID-19 pandemic in the United States. This study further shows that the prospect of achieving vaccine-derived herd immunity (required for COVID-19 elimination) in the U.S., using the Pfizer or Moderna vaccine, is quite promising. In particular, our study shows that herd immunity can be achieved in the U.S. if at least 60% of the population are fully vaccinated. Furthermore, the prospect of eliminating the pandemic in the U.S. in the year 2021 is significantly enhanced if the vaccination program is complemented with non-pharmaceutical interventions at moderate increased levels of compliance (in relation to their baseline compliance). The study further suggests that, while the waning of natural and vaccine-derived immunity against COVID-19 induces only a marginal increase in the burden and projected time-to-elimination of the pandemic, adding the impacts of therapeutic benefits of the vaccines into the model resulted in a dramatic reduction in the burden and time-to-elimination of the pandemic.


2021 ◽  
Vol 11 (14) ◽  
pp. 6508
Author(s):  
Javier de Pedro-Carracedo ◽  
Ana María Ugena ◽  
Ana Pilar Gonzalez-Marcos

The 0–1 test distinguishes between regular and chaotic dynamics for a deterministic system using a time series as a starting point without appealing to any state space reconstruction method. A modification of the 0–1 test allows for the determination of a more comprehensive range of signal dynamic behaviors, particularly in the field of biological signals. We report the results of applying the test and study with more details the PhotoPlethysmoGraphic (PPG) signal behavior from different healthy young subjects, although its use is extensible to other biological signals. While mainly used for heart rate and blood oxygen saturation monitoring, the PPG signal contains extensive physiological dynamics information. We show that the PPG signal, on a healthy young individual, is predominantly quasi-periodic on small timescales (short span of time concerning the dominant frequency). However, on large timescales, PPG signals yield an aperiodic behavior that can be firmly chaotic or a prior transition via an SNA (Strange Nonchaotic Attractor). The results are based on the behavior of well-known time series that are random, chaotic, aperiodic, periodic, and quasi-periodic.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1520
Author(s):  
Anna Kamille Nyegaard ◽  
Johan Raunkjær Ott ◽  
Mogens Steffensen

We formulate a claim valuation problem where the dynamics of the underlying asset process contain the claim value itself. The problem is motivated here by an equity valuation of a firm, with intermediary dividend payments that depend on both the underlying, that is, the assets of the company, and the equity value itself. Since the assets are reduced by the dividend payments, the entanglement of claim, claim value, and underlying is complete and numerically challenging because it forms a forward–backward stochastic system. We propose a numerical approach based on disentanglement of the forward–backward deterministic system for the intrinsic values, a parametric assumption of the claim value in its intrinsic value, and a simulation of the stochastic elements. We illustrate the method in a numerical example where the equity value is approximated efficiently, at least for the relevant ranges of the asset value.


2021 ◽  
Author(s):  
Hamdy El-Metwally ◽  
Mohamed El Sohaly ◽  
Islam Elbaz

Abstract We are concerned about the stochastic nonlinear delay differential equation. The stochasticity arises from the white Gaussian noise which is the time derivative of the standard Brownian motion. The main objective of this paper is to introduce a new technique using Lyapunov functional for the study of stability of the zero solution of the stochastic delay differential system. Constructing a new appropriate deterministic system in the neighborhood of the origin is an effective way to investigate the necessary and sufficient conditions of stability in the sense of the mean square. Nicholson's blowflies equation is one of the major problems in ecology, necessary conditions for the possible extinction of the Nicholson's blowflies population are investigated. We support our theoretical results by providing areas of stability and some numerical simulations of the solution of the system using the Euler-Maruyama scheme which is mean square stable \cite{Maruyama1955,Cao2004}.


Sign in / Sign up

Export Citation Format

Share Document