schnakenberg model
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 15)

H-INDEX

6
(FIVE YEARS 2)

Author(s):  
Natalia A. Wójcik ◽  
Nagia S. Tagiara ◽  
Doris Möncke ◽  
Efstratios I. Kamitsos ◽  
Sharafat Ali ◽  
...  

AbstractElectrical properties of beryllium-alumino-tellurite glasses and glass–ceramics doped with iron ions were studied using impedance spectroscopy. The conductivity was measured over a wide frequency range from 10 mHz to 1 MHz and the temperature range from 213 to 473 K. The D.C. conductivity values showed a correlation with the Fe-ion concentration and ratio of iron ions on different valence states in the samples. On the basis of Jonscher universal dielectric response the temperature dependence of conductivity parameters were determined and compared to theoretical models collected by Elliott. In glasses, the conduction process was found to be due to the overlap polaron tunneling while in glass–ceramics the quantum mechanical tunneling between semiconducting crystallites of iron oxides is proposed. The D.C. conductivity was found not to follow Arrhenius relation. The Schnakenberg model was used to analyze the conductivity behavior and the polaron hopping energy and disorder energy were estimated. Additionally, the correlation between alumina dissolution and basicity of the melts was observed.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Faiz Muhammad Khan ◽  
Amjad Ali ◽  
Nawaf Hamadneh ◽  
Abdullah ◽  
Md Nur Alam

Schnakenberg model is known as one of the influential model used in several biological processes. The proposed model is an autocatalytic reaction in nature that arises in various biological models. In such kind of reactions, the rate of reaction speeds up as the reaction proceeds. It is because when a product itself acts as a catalyst. In fact, model endows fractional derivatives that got great advancement in the investigation of mathematical modeling with memory effect. Therefore, in the present paper, the authors develop a scheme for the solution of fractional order Schnakenberg model. The proposed model describes an auto chemical reaction with possible oscillatory behavior which may have several applications in biological and biochemical processes. In this work, the authors generalized the concept of integer order Schnakenberg model to fractional order Schnakenberg model. We provided the approximate solution for the underlying generalized nonlinear Schnakenberg model in the sense of Caputo differential operator via Laplace Adomian decomposition method (LADM). Furthermore, we established the general scheme for the considered model in the form of infinite series by the aforementioned technique. The consequent results obtained by the proposed technique ensure that LADM is an effective and accurate techniques to handle nonlinear partial differential equations as compared to the other available numerical techniques. Finally, the obtained numerical solution is visualized graphically by MATLAB to describe the dynamics of desired solution.


Author(s):  
FAHAD AL SAADI ◽  
ALAN CHAMPNEYS ◽  
CHUNYI GAI ◽  
THEODORE KOLOKOLNIKOV

An analysis is undertaken of the formation and stability of localised patterns in a 1D Schanckenberg model, with source terms in both the activator and inhibitor fields. The aim is to illustrate the connection between semi-strong asymptotic analysis and the theory of localised pattern formation within a pinning region created by a subcritical Turing bifurcation. A two-parameter bifurcation diagram of homogeneous, periodic and localised patterns is obtained numerically. A natural asymptotic scaling for semi-strong interaction theory is found where an activator source term \[a = O(\varepsilon )\] and the inhibitor source \[b = O({\varepsilon ^2})\] , with ε2 being the diffusion ratio. The theory predicts a fold of spike solutions leading to onset of localised patterns upon increase of b from zero. Non-local eigenvalue arguments show that both branches emanating from the fold are unstable, with the higher intensity branch becoming stable through a Hopf bifurcation as b increases beyond the \[O(\varepsilon )\] regime. All analytical results are found to agree with numerics. In particular, the asymptotic expression for the fold is found to be accurate beyond its region of validity, and its extension into the pinning region is found to form the low b boundary of the so-called homoclinic snaking region. Further numerical results point to both sub and supercritical Hopf bifurcation and novel spikeinsertion dynamics.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Guido Schneider ◽  
Matthias Winter

<p style='text-indent:20px;'>We consider reaction-diffusion systems for which the trivial solution simultaneously becomes unstable via a short-wave Turing and a long-wave Hopf instability. The Brusseletor, Gierer-Meinhardt system and Schnakenberg model are prototype biological pattern forming systems which show this kind of behavior for certain parameter regimes. In this paper we prove the validity of the amplitude system associated to this kind of instability. Our analytical approach is based on the use of mode filters and normal form transformations. The amplitude system allows us an efficient numerical simulation of the original multiple scaling problems close to the instability.</p>


Author(s):  
Zafar Iqbal ◽  
Nauman Ahmed ◽  
Dumitru Baleanu ◽  
Muhammad Rafiq ◽  
Muhammad Sajid Iqbal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document