Spatially oriented convolutional neural network for spatial relation extraction from natural language texts

2021 ◽  
Author(s):  
Qinjun Qiu ◽  
Zhong Xie ◽  
Kai Ma ◽  
Zhanlong Chen ◽  
Liufeng Tao
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Siyuan Zhao ◽  
Zhiwei Xu ◽  
Limin Liu ◽  
Mengjie Guo ◽  
Jing Yun

Convolutional neural network (CNN) has revolutionized the field of natural language processing, which is considerably efficient at semantics analysis that underlies difficult natural language processing problems in a variety of domains. The deceptive opinion detection is an important application of the existing CNN models. The detection mechanism based on CNN models has better self-adaptability and can effectively identify all kinds of deceptive opinions. Online opinions are quite short, varying in their types and content. In order to effectively identify deceptive opinions, we need to comprehensively study the characteristics of deceptive opinions and explore novel characteristics besides the textual semantics and emotional polarity that have been widely used in text analysis. In this paper, we optimize the convolutional neural network model by embedding the word order characteristics in its convolution layer and pooling layer, which makes convolutional neural network more suitable for short text classification and deceptive opinions detection. The TensorFlow-based experiments demonstrate that the proposed detection mechanism achieves more accurate deceptive opinion detection results.


Author(s):  
Parisa Kordjamshidi ◽  
Paolo Frasconi ◽  
Martijn Van Otterlo ◽  
Marie-Francine Moens ◽  
Luc De Raedt

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Leilei Kong ◽  
Zhongyuan Han ◽  
Yong Han ◽  
Haoliang Qi

Paraphrase identification is central to many natural language applications. Based on the insight that a successful paraphrase identification model needs to adequately capture the semantics of the language objects as well as their interactions, we present a deep paraphrase identification model interacting semantics with syntax (DPIM-ISS) for paraphrase identification. DPIM-ISS introduces the linguistic features manifested in syntactic features to produce more explicit structures and encodes the semantic representation of sentence on different syntactic structures by means of interacting semantics with syntax. Then, DPIM-ISS learns the paraphrase pattern from this representation interacting the semantics with syntax by exploiting a convolutional neural network with convolution-pooling structure. Experiments are conducted on the corpus of Microsoft Research Paraphrase (MSRP), PAN 2010 corpus, and PAN 2012 corpus for paraphrase plagiarism detection. The experimental results demonstrate that DPIM-ISS outperforms the classical word-matching approaches, the syntax-similarity approaches, the convolution neural network-based models, and some deep paraphrase identification models.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Boting Geng

Research on relation extraction from patent documents, a high-priority topic of natural language process in recent years, is of great significance to a series of patent downstream applications, such as patent content mining, patent retrieval, and patent knowledge base constructions. Due to lengthy sentences, crossdomain technical terms, and complex structure of patent claims, it is extremely difficult to extract open triples with traditional methods of Natural Language Processing (NLP) parsers. In this paper, we propose an Open Relation Extraction (ORE) approach with transforming relation extraction problem into sequence labeling problem in patent claims, which extract none predefined relationship triples from patent claims with a hybrid neural network architecture based on multihead attention mechanism. The hybrid neural network framework combined with Bi-LSTM and CNN is proposed to extract argument phrase features and relation phrase features simultaneously. The Bi-LSTM network gains long distance dependency features, and the CNN obtains local content feature; then, multihead attention mechanism is applied to get potential dependency relationship for time series of RNN model; the result of neural network proposed above applied to our constructed open patent relation dataset shows that our method outperforms both traditional classification algorithms of machine learning and the-state-of-art neural network classification models in the measures of Precision, Recall, and F1.


Sign in / Sign up

Export Citation Format

Share Document