An Algebraic Relation Connected with the Theory of Curves on Non-Singular Surfaces

1959 ◽  
Vol s1-34 (2) ◽  
pp. 195-204 ◽  
Author(s):  
D. G. Northcott
2005 ◽  
Vol 96 (2) ◽  
pp. 191-196 ◽  
Author(s):  
Gregory S. Rohrer ◽  
Chang-Soo Kim

1992 ◽  
Vol 280 ◽  
Author(s):  
J. F. Egler ◽  
N. Otsuka ◽  
K. Mahalingam

ABSTRACTGrowth kinetics on non-singular surfaces were studied by Monte Carlo simulations. In contrast to the growth on singular and vicinal surfaces, the sticking coefficient on the non-singular surfaces was found to decrease with increase of the surface roughness. Simulations of annealing processes showed that surface diffusion of atoms leads to a stationary surface roughness, which is explained by multiple configurations having the lowest energy in the non-singular surface.


2002 ◽  
Vol 6 (1) ◽  
pp. 393-401 ◽  
Author(s):  
Massimiliano Iori ◽  
Riccardo Piergallini
Keyword(s):  

Author(s):  
Mintae Kim ◽  
Joonho Moon ◽  
Jonathan A. Wickert

Abstract When a structure deviates from axisymmetry because of circumferentially varying model features, significant changes can occur to its natural frequencies and modes, particularly for the doublet modes that have non-zero nodal diameters and repeated natural frequencies in the limit of axisymmetry. Of technical interest are configurations in which inertia, dissipation, stiffness, or domain features are evenly distributed around the structure. Aside from the well-studied phenomenon of eigenvalue splitting, whereby the natural frequencies of certain doublets split into distinct values, modes of the axisymmetric structure that are precisely harmonic become contaminated by certain additional wavenumbers in the presence of periodically spaced model features. From analytical, numerical, and experimental perspectives, this paper investigates spatial modulation of the doublet modes, particularly those retaining repeated natural frequencies for which modulation is most acute. In some cases, modulation can be sufficiently severe that a mode shape will beat spatially as harmonics with commensurate wavenumbers combine, just as the superposition of time records having nearly equal frequencies leads to classic temporal beating. A straightforward algebraic relation and a graphical checkerboard diagram are discussed with a view towards predicting the wavenumbers present in modulated eigenfunctions given the number of nodal diameters in the base mode and the number of equally spaced model features.


Sign in / Sign up

Export Citation Format

Share Document