scholarly journals K1 of products of Drinfeld modular curves and special values of L-functions

2010 ◽  
Vol 146 (4) ◽  
pp. 886-918 ◽  
Author(s):  
Ramesh Sreekantan

AbstractBeilinson [Higher regulators and values of L-functions, Itogi Nauki i Tekhniki Seriya Sovremennye Problemy Matematiki Noveishie Dostizheniya (Current problems in mathematics), vol. 24 (Vserossiisky Institut Nauchnoi i Tekhnicheskoi Informatsii, Moscow, 1984), 181–238] obtained a formula relating the special value of the L-function of H2 of a product of modular curves to the regulator of an element of a motivic cohomology group, thus providing evidence for his general conjectures on special values of L-functions. In this paper we prove a similar formula for the L-function of the product of two Drinfeld modular curves, providing evidence for an analogous conjecture in the case of function fields.

2015 ◽  
Vol 18 (1) ◽  
pp. 699-712
Author(s):  
Alp Bassa ◽  
Peter Beelen ◽  
Nhut Nguyen

In this paper, we investigate examples of good and optimal Drinfeld modular towers of function fields. Surprisingly, the optimality of these towers has not been investigated in full detail in the literature. We also give an algorithmic approach for obtaining explicit defining equations for some of these towers and, in particular, give a new explicit example of an optimal tower over a quadratic finite field.


2017 ◽  
Vol 153 (5) ◽  
pp. 889-946 ◽  
Author(s):  
Francesco Lemma

We establish a connection between motivic cohomology classes over the Siegel threefold and non-critical special values of the degree-four $L$-function of some cuspidal automorphic representations of $\text{GSp}(4)$. Our computation relies on our previous work [On higher regulators of Siegel threefolds I: the vanishing on the boundary, Asian J. Math. 19 (2015), 83–120] and on an integral representation of the $L$-function due to Piatetski-Shapiro.


2005 ◽  
Vol 48 (4) ◽  
pp. 535-546 ◽  
Author(s):  
Jordan S. Ellenberg

AbstractLet be an orthonormal basis for weight 2 cusp forms of level N. We show that various weighted averages of special values L( f ⭙ χ, 1) over f ∈ are equal to 4πc +O(N–1+∊), where c is an explicit nonzero constant. A previous result of Duke gives an error term of O(N–1/2 log N).


2019 ◽  
Vol 2019 (748) ◽  
pp. 1-138
Author(s):  
Alexander B. Goncharov

Abstract Hodge correlators are complex numbers given by certain integrals assigned to a smooth complex curve. We show that they are correlators of a Feynman integral, and describe the real mixed Hodge structure on the pronilpotent completion of the fundamental group of the curve. We introduce motivic correlators, which are elements of the motivic Lie algebra and whose periods are the Hodge correlators. They describe the motivic fundamental group of the curve. We describe variations of real mixed Hodge structures on a variety by certain connections on the product of the variety by twistor plane. We call them twistor connections. In particular, we define the canonical period map on variations of real mixed Hodge structures. We show that the obtained period functions satisfy a simple Maurer–Cartan type non-linear differential equation. Generalizing this, we suggest a DG-enhancement of the subcategory of Saito’s Hodge complexes with smooth cohomology. We show that when the curve varies, the Hodge correlators are the coefficients of the twistor connection describing the corresponding variation of real MHS. Examples of the Hodge correlators include classical and elliptic polylogarithms, and their generalizations. The simplest Hodge correlators on the modular curves are the Rankin–Selberg integrals. Examples of the motivic correlators include Beilinson’s elements in the motivic cohomology, e.g. the ones delivering the Beilinson–Kato Euler system on modular curves.


2019 ◽  
Vol 31 (3) ◽  
pp. 647-659
Author(s):  
Fu-Tsun Wei ◽  
Takao Yamazaki

Abstract We consider the generalized Jacobian {\widetilde{J}} of the modular curve {X_{0}(N)} of level N with respect to a reduced divisor consisting of all cusps. Supposing N is square free, we explicitly determine the structure of the {\mathbb{Q}} -rational torsion points on {\widetilde{J}} up to 6-primary torsion. The result depicts a fuller picture than [18] where the case of prime power level was studied. We also obtain an analogous result for Drinfeld modular curves. Our proof relies on similar results for classical Jacobians due to Ohta, Papikian and the first author. We also discuss the Hecke action on {\widetilde{J}} and its Eisenstein property.


2012 ◽  
Vol 08 (03) ◽  
pp. 697-714 ◽  
Author(s):  
EDUARDO FRIEDMAN ◽  
ALDO PEREIRA

For f and g polynomials in p variables, we relate the special value at a non-positive integer s = -N, obtained by analytic continuation of the Dirichlet series [Formula: see text], to special values of zeta integrals Z(s;f,g) = ∫x∊[0, ∞)p g(x)f(x)-s dx ( Re (s) ≫ 0). We prove a simple relation between ζ(-N;f,g) and Z(-N;fa, ga), where for a ∈ ℂp, fa(x) is the shifted polynomial fa(x) = f(a + x). By direct calculation we prove the product rule for zeta integrals at s = 0, degree (fh) ⋅ Z(0;fh, g) = degree (f) ⋅ Z(0;f, g) + degree (h) ⋅ Z(0;h, g), and deduce the corresponding rule for Dirichlet series at s = 0, degree (fh) ⋅ ζ(0;fh, g) = degree (f) ⋅ ζ(0;f, g)+ degree (h)⋅ζ(0;h, g). This last formula generalizes work of Shintani and Chen–Eie.


Sign in / Sign up

Export Citation Format

Share Document