EXPLICIT CONSTRUCTIONS OF UNIVERSAL ℝ-TREES AND ASYMPTOTIC GEOMETRY OF HYPERBOLIC SPACES

2001 ◽  
Vol 33 (6) ◽  
pp. 727-734 ◽  
Author(s):  
ANNA DYUBINA ◽  
IOSIF POLTEROVICH

This paper presents explicit constructions of universal ℝ-trees as certain spaces of functions, and also proves that a 2ℵ0-universal ℝ-tree can be isometrically embedded at infinity into a complete simply connected manifold of negative curvature, or into a non-abelian free group. In contrast to asymptotic cone constructions, asymptotic spaces are built without using the axiom of choice.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Limei Cao ◽  
Didong Li ◽  
Erchuan Zhang ◽  
Zhenning Zhang ◽  
Huafei Sun

we analyze the geometrical structures of statistical manifoldSconsisting of all the wrapped Cauchy distributions. We prove thatSis a simply connected manifold with constant negative curvatureK=-2. However, it is not isometric to the hyperbolic space becauseSis noncomplete. In fact,Sis approved to be a cohomogeneity one manifold. Finally, we use several tricks to get the geodesics and explore the divergence performance of them by investigating the Jacobi vector field.


1985 ◽  
Vol 50 (2) ◽  
pp. 458-467 ◽  
Author(s):  
Paul E. Howard

Nielsen [7] has proved that every subgroup of a free group of finite rank is free. The theorem was later strengthened by Schreier [8] by eliminating the finiteness restriction on the rank. Several proofs of this theorem (known as the Nielsen-Schreier theorem, henceforth denoted by NS) have appeared since Schreier's 1927 paper (see [1] and [2]). All proofs of NS use the axiom of choice (AC) and it is natural to ask whether NS is equivalent to AC. Läuchli has given a partial answer to this question by proving [6] that the negation of NS is consistent with ZFA (Zermelo-Fraenkel set theory weakened to permit the existence of atoms). By the Jech-Sochor embedding theorem (see [3] and [4]) ZFA can be replaced by ZF. Some form of AC, therefore, is needed to prove NS. The main purpose of this paper is to give a further answer to this question.In §2 we prove that NS implies ACffin (the axiom of choice for sets of finite sets). In §3 we show that a strengthened version of NS implies AC and in §4 we give a partial list of open problems.Let y be a set; ∣y∣ denotes the cardinal number of y and (y) is the power set of y. If p is a permutation of y and t ∈ y, the p-orbit of t is the set {pn(t): n is an integer}. Ifwe call p a cyclic permutation of y. If f is a function with domain y and x ⊆ y, f″x denotes the set {f(t):t ∈ x}. If A is a subset of a group (G, °) (sometimes (G, °) will be denoted by G) then A−1 = {x−1:x ∈ A} and [A] denotes the subgroup of G generated by A.


Author(s):  
Alexander R. Pruss

This is a mainly technical chapter concerning the causal embodiment of the Axiom of Choice from set theory. The Axiom of Choice powered a construction of an infinite fair lottery in Chapter 4 and a die-rolling strategy in Chapter 5. For those applications to work, there has to be a causally implementable (though perhaps not compatible with our laws of nature) way to implement the Axiom of Choice—and, for our purposes, it is ideal if that involves infinite causal histories, so the causal finitist can reject it. Such a construction is offered. Moreover, other paradoxes involving the Axiom of Choice are given, including two Dutch Book paradoxes connected with the Banach–Tarski paradox. Again, all this is argued to provide evidence for causal finitism.


Author(s):  
Christine Escher ◽  
Catherine Searle

Abstract Let ℳ 0 n {\mathcal{M}_{0}^{n}} be the class of closed, simply connected, non-negatively curved Riemannian n-manifolds admitting an isometric, effective, isotropy-maximal torus action. We prove that if M ∈ ℳ 0 n {M\in\mathcal{M}_{0}^{n}} , then M is equivariantly diffeomorphic to the free, linear quotient by a torus of a product of spheres of dimensions greater than or equal to 3. As a special case, we then prove the Maximal Symmetry Rank Conjecture for all M ∈ ℳ 0 n {M\in\mathcal{M}_{0}^{n}} . Finally, we show the Maximal Symmetry Rank Conjecture for simply connected, non-negatively curved manifolds holds for dimensions less than or equal to 9 without additional assumptions on the torus action.


2015 ◽  
Vol 26 (05) ◽  
pp. 1550029
Author(s):  
Yasha Savelyev

We study a smooth analogue of jumping curves of a holomorphic vector bundle, and use Yang–Mills theory over S2 to show that any non-trivial, smooth Hermitian vector bundle E over a smooth simply connected manifold, must have such curves. This is used to give new examples complex manifolds for which a non-trivial holomorphic vector bundle must have jumping curves in the classical sense (when c1(E) is zero). We also use this to give a new proof of a theorem of Gromov on the norm of curvature of unitary connections, and make the theorem slightly sharper. Lastly we define a sequence of new non-trivial integer invariants of smooth manifolds, connected to this theory of smooth jumping curves, and make some computations of these invariants. Our methods include an application of the recently developed Morse–Bott chain complex for the Yang–Mills functional over S2.


Sign in / Sign up

Export Citation Format

Share Document