hyperbolic spaces
Recently Published Documents


TOTAL DOCUMENTS

526
(FIVE YEARS 56)

H-INDEX

21
(FIVE YEARS 1)

2022 ◽  
Vol 16 (2) ◽  
pp. 1-23
Author(s):  
Yiding Zhang ◽  
Xiao Wang ◽  
Nian Liu ◽  
Chuan Shi

Heterogeneous information network (HIN) embedding, aiming to project HIN into a low-dimensional space, has attracted considerable research attention. Most of the existing HIN embedding methods focus on preserving the inherent network structure and semantic correlations in Euclidean spaces. However, one fundamental problem is whether the Euclidean spaces are the intrinsic spaces of HIN? Recent researches find the complex network with hyperbolic geometry can naturally reflect some properties, e.g., hierarchical and power-law structure. In this article, we make an effort toward embedding HIN in hyperbolic spaces. We analyze the structures of three HINs and discover some properties, e.g., the power-law distribution, also exist in HINs. Therefore, we propose a novel HIN embedding model HHNE. Specifically, to capture the structure and semantic relations between nodes, HHNE employs the meta-path guided random walk to sample the sequences for each node. Then HHNE exploits the hyperbolic distance as the proximity measurement. We also derive an effective optimization strategy to update the hyperbolic embeddings iteratively. Since HHNE optimizes different relations in a single space, we further propose the extended model HHNE++. HHNE++ models different relations in different spaces, which enables it to learn complex interactions in HINs. The optimization strategy of HHNE++ is also derived to update the parameters of HHNE++ in a principle manner. The experimental results demonstrate the effectiveness of our proposed models.



Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 134
Author(s):  
Chongyang Qiu ◽  
Xinfei Li ◽  
Jianhua Pang ◽  
Peichang Ouyang

Spirals, tilings, and hyperbolic geometry are important mathematical topics with outstanding aesthetic elements. Nonetheless, research on their aesthetic visualization is extremely limited. In this paper, we give a simple method for creating Escher-like hyperbolic spiral patterns. To this end, we first present a fast algorithm to construct Euclidean spiral tilings with cyclic symmetry. Then, based on a one-to-one mapping between Euclidean and hyperbolic spaces, we establish two simple approaches for constructing spiral tilings in hyperbolic models. Finally, we use wallpaper templates to render such tilings, which results in the desired Escher-like hyperbolic spiral patterns. The method proposed is able to generate a great variety of visually appealing patterns.



Author(s):  
Diego Alonso-Orán ◽  
Fernando Chamizo ◽  
Ángel D. Martínez ◽  
Albert Mas

AbstractIn this paper we present an elementary proof of a pointwise radial monotonicity property of heat kernels that is shared by the Euclidean spaces, spheres and hyperbolic spaces. The main result was discovered by Cheeger and Yau in 1981 and rediscovered in special cases during the last few years. It deals with the monotonicity of the heat kernel from special points on revolution hypersurfaces. Our proof hinges on a non straightforward but elementary application of the parabolic maximum principle. As a consequence of the monotonicity property, we derive new inequalities involving classical special functions.



Author(s):  
Qingshan Zhou ◽  
Yaxiang Li ◽  
Xining Li


2021 ◽  
Vol 47 (1) ◽  
pp. 39-55
Author(s):  
Aidyn Kassymov ◽  
Michael Ruzhansky ◽  
Durvudkhan Suragan

In this note, we obtain a reverse version of the integral Hardy inequality on metric measure spaces. Moreover, we give necessary and sufficient conditions for the weighted reverse Hardy inequality to be true. The main tool in our proof is a continuous version of the reverse Minkowski inequality. In addition, we present some consequences of the obtained reverse Hardy inequality on the homogeneous groups, hyperbolic spaces and Cartan-Hadamard manifolds.  



2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yanlin Li ◽  
Akram Ali ◽  
Fatemah Mofarreh ◽  
Nadia Alluhaibi

In this paper, we show that if the Laplacian and gradient of the warping function of a compact warped product submanifold Ω p + q in the hyperbolic space ℍ m − 1 satisfy various extrinsic restrictions, then Ω p + q has no stable integral currents, and its homology groups are trivial. Also, we prove that the fundamental group π 1 Ω p + q is trivial. The restrictions are also extended to the eigenvalues of the warped function, the integral Ricci curvature, and the Hessian tensor. The results obtained in the present paper can be considered as generalizations of the Fu–Xu theorem in the framework of the compact warped product submanifold which has the minimal base manifold in the corresponding ambient manifolds.



Sign in / Sign up

Export Citation Format

Share Document