scholarly journals Examples of linear multi-box splines

2012 ◽  
Vol 15 ◽  
pp. 444-462
Author(s):  
Abdellatif Bettayeb

AbstractLet S1=S1(v0,…,vr+1) be the space of compactly supported C0 piecewise linear functions on a mesh M of lines through ℤ2 in directions v0,…,vr+1, possibly satisfying some restrictions on the jumps of the first order derivative. A sequence ϕ=(ϕ1,…,ϕr) of elements of S1 is called a multi-box spline if every element of S1 is a finite linear combination of shifts of (the components of) ϕ. We give some examples for multi-box splines and show that they are stable. It is further shown that any multi-box spline is not always symmetric

Author(s):  
Arturo Sarmiento-Reyes ◽  
Luis Hernandez-Martinez ◽  
Miguel Angel Gutierrez de Anda ◽  
Francisco Javier Castro Gonzalez

We describe a sense in which mesh duality is equivalent to Legendre duality. That is, a general pair of meshes, which satisfy a definition of duality for meshes, are shown to be the projection of a pair of piecewise linear functions that are dual to each other in the sense of a Legendre dual transformation. In applications the latter functions can be a tangent plane approximation to a smoother function, and a chordal plane approximation to its Legendre dual. Convex examples include one from meteorology, and also the relation between the Delaunay mesh and the Voronoi tessellation. The latter are shown to be the projections of tangent plane and chordal approximations to the same paraboloid.


1991 ◽  
Vol 43 (2) ◽  
pp. 241-250 ◽  
Author(s):  
J.N. Pandey ◽  
O.P. Singh

It is shown that a bounded linear operator T from Lρ(Rn) to itself which commutes both with translations and dilatations is a finite linear combination of Hilbert-type transforms. Using this we show that the ρ-norm of the Hilbert transform is the same as the ρ-norm of its truncation to any Lebesgue measurable subset of Rn with non-zero measure.


Author(s):  
H. K. Farahat ◽  
L. Mirsky

Let be a free additive abelian group, and let be a basis of , so that every element of can be expressed in a unique way as a (finite) linear combination with integral coefficients of elements of . We shall be concerned with the ring of endomorphisms of , the sum and product of the endomorphisms φ, χ being defined, in the usual manner, by the equationsA permutation of a set will be called restricted if it moves only a finite number of elements. We call an endomorphism of a permutation endomorphism if it induces a restricted permutation of the basis .


Sign in / Sign up

Export Citation Format

Share Document