restricted permutation
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 0)

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhengyi Zhu ◽  
Glen A. Satten ◽  
Caroline Mitchell ◽  
Yi-Juan Hu

Abstract Background Matched-set data arise frequently in microbiome studies. For example, we may collect pre- and post-treatment samples from a set of individuals, or use important confounding variables to match data from case participants to one or more control participants. Thus, there is a need for statistical methods for data comprised of matched sets, to test hypotheses against traits of interest (e.g., clinical outcomes or environmental factors) at the community level and/or the operational taxonomic unit (OTU) level. Optimally, these methods should accommodate complex data such as those with unequal sample sizes across sets, confounders varying within sets, and continuous traits of interest. Methods PERMANOVA is a commonly used distance-based method for testing hypotheses at the community level. We have also developed the linear decomposition model (LDM) that unifies the community-level and OTU-level tests into one framework. Here we present a new strategy that can be used with both PERMANOVA and the LDM for analyzing matched-set data. We propose to include an indicator variable for each set as covariates, so as to constrain comparisons between samples within a set, and also permute traits within each set, which can account for exchangeable sample correlations. The flexible nature of PERMANOVA and the LDM allows discrete or continuous traits or interactions to be tested, within-set confounders to be adjusted, and unbalanced data to be fully exploited. Results Our simulations indicate that our proposed strategy outperformed alternative strategies, including the commonly used one that utilizes restricted permutation only, in a wide range of scenarios. Using simulation, we also explored optimal designs for matched-set studies. The flexibility of PERMANOVA and the LDM for a variety of matched-set microbiome data is illustrated by the analysis of data from two real studies. Conclusions Including set indicator variables and permuting within sets when analyzing matched-set data with PERMANOVA or the LDM is a strategy that performs well and is capable of handling the complex data structures that frequently occur in microbiome studies.


2020 ◽  
Author(s):  
James G. Saulsbury

AbstractThe analysis of patterns in comparative data has come to be dominated by least-squares regression, mainly as implemented in phylogenetic generalized least-squares (PGLS). This approach has two main drawbacks: it makes relatively restrictive assumptions about distributions and can only address questions about the conditional mean of one variable as a function of other variables. Here I introduce two new non-parametric constructs for the analysis of a broader range of comparative questions: phylogenetic permutation tests, based on cyclic permutations and permutations conserving phylogenetic signal. The cyclic permutation test, an extension of the restricted permutation test that performs exchanges by rotating nodes on the phylogeny, performs well within and outside the bounds where PGLS is applicable but can only be used for balanced trees. The signal-based permutation test has identical statistical properties and works with all trees. The statistical performance of these tests compares favorably with independent contrasts and surpasses that of a previously developed permutation test that exchanges closely related pairs of observations more frequently. Three case studies illustrate the use of phylogenetic permutations for quantile regression with non-normal and heteroscedastic data, testing hypotheses about morphospace occupation, and comparative problems in which the data points are not tips in the phylogeny.


2020 ◽  
Author(s):  
Zhengyi Zhu ◽  
Glen A Satten ◽  
Caroline Mitchell ◽  
Yi-Juan Hu

Abstract Background: Matched-set data arise frequently in microbiome studies. For example, we may collect pre- and post-treatment samples from a set of individuals, or use important confounding variables to match data from case participants to one or more control participants. Thus, there is a need for statistical methods for data comprised of matched sets, to test hypotheses against traits of interest (e.g., clinical outcomes or environmental factors) at the community level and/or the OTU (operational taxonomic unit) level. Optimally, these methods should accommodate complex data such as those with unequal sample sizes cross sets, confounders varying within sets, as well as continuous traits of interest. Methods: PERMANOVA is a commonly used distance-based method for testing hypotheses at the community level. We have also developed the linear decomposition model (LDM) that unifies the community-level and OTU-level tests into one framework. Here we present a new strategy that can be used with both PERMANOVA and the LDM for analyzing matched-set data. We propose to include an indicator variable for each set as covariates, so as to constrain comparisons between samples within a set, and also permute traits within each set, which can account for exchangeable sample correlations. The flexible nature of PERMANOVA and the LDM allows discrete or continuous traits or interactions to be tested, within-set confounders to be adjusted, and unbalanced data to be fully exploited. Results: Our simulations indicate that our proposed strategy outperformed alternative strategies, including the commonly-used one that utilizes restricted permutation only, in a wide range of scenarios. Using simulation, we also explored optimal designs for matched-set studies. The flexibility of PERMANOVA and the LDM for a variety of matched-set microbiome data is illustrated by the analysis of data from two real studies. Conclusions: Including set indicator variables and permuting within sets when analyzing matched-set data with PERMANOVA or the LDM is a strategy that performs well and is capable of handling the complex data structures that frequently occur in microbiome studies.


10.37236/403 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Xiaojing Chen ◽  
Wenchang Chu

The counting problem is investigated for the permutation triples of the first $n$ natural numbers with exactly $k$ occurrences of simultaneous "rises". Their recurrence relations and bivariate generating functions are established.


2001 ◽  
Vol 58 (3) ◽  
pp. 626-639 ◽  
Author(s):  
Marti J Anderson

The most appropriate strategy to be used to create a permutation distribution for tests of individual terms in complex experimental designs is currently unclear. There are often many possibilities, including restricted permutation or permutation of some form of residuals. This paper provides a summary of recent empirical and theoretical results concerning available methods and gives recommendations for their use in univariate and multivariate applications. The focus of the paper is on complex designs in analysis of variance and multiple regression (i.e., linear models). The assumption of exchangeability required for a permutation test is assured by random allocation of treatments to units in experimental work. For observational data, exchangeability is tantamount to the assumption of independent and identically distributed errors under a null hypothesis. For partial regression, the method of permutation of residuals under a reduced model has been shown to provide the best test. For analysis of variance, one must first identify exchangeable units by considering expected mean squares. Then, one may generally produce either (i) an exact test by restricting permutations or (ii) an approximate test by permuting raw data or some form of residuals. The latter can provide a more powerful test in many situations.


Author(s):  
H. K. Farahat ◽  
L. Mirsky

Let be a free additive abelian group, and let be a basis of , so that every element of can be expressed in a unique way as a (finite) linear combination with integral coefficients of elements of . We shall be concerned with the ring of endomorphisms of , the sum and product of the endomorphisms φ, χ being defined, in the usual manner, by the equationsA permutation of a set will be called restricted if it moves only a finite number of elements. We call an endomorphism of a permutation endomorphism if it induces a restricted permutation of the basis .


Sign in / Sign up

Export Citation Format

Share Document