scholarly journals On the double Laplace transform of the truncated variation of a Brownian motion with drift

2016 ◽  
Vol 19 (1) ◽  
pp. 281-292
Author(s):  
Rafał Marcin Łochowski

The aim of this paper is to find a formula for the double Laplace transform of the truncated variation of a Brownian motion with drift. In order to find the double Laplace transform, we also prove some identities for the Brownian motion with drift, which may be of independent interest.

2009 ◽  
Vol 46 (2) ◽  
pp. 593-600 ◽  
Author(s):  
Svante Janson ◽  
Niclas Petersson

In this paper we study the integral of the supremum process of standard Brownian motion. We present an explicit formula for the moments of the integral (or area)(T) covered by the process in the time interval [0,T]. The Laplace transform of(T) follows as a consequence. The main proof involves a double Laplace transform of(T) and is based on excursion theory and local time for Brownian motion.


2011 ◽  
Vol 48 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Angelos Dassios ◽  
Shanle Wu

In this paper we study the excursion time of a Brownian motion with drift outside a corridor by using a four-state semi-Markov model. In mathematical finance, these results have an important application in the valuation of double-barrier Parisian options. We subsequently obtain an explicit expression for the Laplace transform of its price.


Risks ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 127
Author(s):  
Angelos Dassios ◽  
Junyi Zhang

In this paper, we study the Parisian time of a reflected Brownian motion with drift on a finite collection of rays. We derive the Laplace transform of the Parisian time using a recursive method, and provide an exact simulation algorithm to sample from the distribution of the Parisian time. The paper was motivated by the settlement delay in the real-time gross settlement (RTGS) system. Both the central bank and the participating banks in the system are concerned about the liquidity risk, and are interested in the first time that the duration of settlement delay exceeds a predefined limit. We reduce this problem to the calculation of the Parisian time. The Parisian time is also crucial in the pricing of Parisian type options; to this end, we will compare our results to the existing literature.


2011 ◽  
Vol 48 (01) ◽  
pp. 1-20 ◽  
Author(s):  
Angelos Dassios ◽  
Shanle Wu

In this paper we study the excursion time of a Brownian motion with drift outside a corridor by using a four-state semi-Markov model. In mathematical finance, these results have an important application in the valuation of double-barrier Parisian options. We subsequently obtain an explicit expression for the Laplace transform of its price.


2009 ◽  
Vol 46 (02) ◽  
pp. 593-600
Author(s):  
Svante Janson ◽  
Niclas Petersson

In this paper we study the integral of the supremum process of standard Brownian motion. We present an explicit formula for the moments of the integral (or area)(T) covered by the process in the time interval [0,T]. The Laplace transform of(T) follows as a consequence. The main proof involves a double Laplace transform of(T) and is based on excursion theory and local time for Brownian motion.


Author(s):  
Angelos Dassios ◽  
Junyi Zhang

In this paper, we study the Parisian time of a reflected Brownian motion with drift on a finite collection of rays. We derive the Laplace transform of the Parisian time using a recursive method, and provide an exact simulation algorithm to sample from the distribution of the Parisian time. The paper is motivated by the settlement delay in the real-time gross settlement (RTGS) system. Both the central bank and the participating banks in the system are concerned about the liquidity risk, and are interested in the first time that the duration of settlement delay exceeds a predefined limit, we reduce this problem to the calculation of the Parisian time. The Parisian time is also crucial in the pricing of Parisian type options; to this end, we will compare our results with the existing literature.


Filomat ◽  
2017 ◽  
Vol 31 (20) ◽  
pp. 6269-6280
Author(s):  
Hassan Gadain

In this work, combined double Laplace transform and Adomian decomposition method is presented to solve nonlinear singular one dimensional thermo-elasticity coupled system. Moreover, the convergence proof of the double Laplace transform decomposition method applied to our problem. By using one example, our proposed method is illustrated and the obtained results are confirmed.


Sign in / Sign up

Export Citation Format

Share Document