scholarly journals Expression of TRPV1 channels by Cajal-Retzius cells and layer-specific modulation of synaptic transmission by capsaicin in the mouse hippocampus

2018 ◽  
Vol 596 (16) ◽  
pp. 3739-3758 ◽  
Author(s):  
Max Anstötz ◽  
Sun Kyong Lee ◽  
Gianmaria Maccaferri
2012 ◽  
Vol 37 (5) ◽  
pp. 880-887 ◽  
Author(s):  
Steve Connor ◽  
Gustavo Tenorio ◽  
Michael Tom Clandinin ◽  
Yves Sauvé

While some studies on dietary supplementation with docosahexaenoic acid (DHA, 22:6n-3) have reported a beneficial effect on memory as a function of age, others have failed to find any effect. To clarify this issue, we sought to determine whether supplementing mice with a DHA-enriched diet could alter the ability of synapses to undergo activity-dependent changes in the hippocampus, a brain structure involved in forming new spatial memories. We found that DHA was increased by 29% ± 5% (mean ± SE) in the hippocampus for the supplemented (DHA+) versus nonsupplemented (control) group (n = 5 mice per group; p < 0.05). Such DHA elevation was associated with enhanced synaptic transmission (p < 0.05) as assessed by application of a high-frequency electrical stimulation protocol (100 Hz stimulation, which induced transient (<2 h) increases in synaptic strength) to slices from DHA+ (n = 4 mice) hippocampi when compared with controls (n = 4 mice). Increased synaptic responses were evident 60 min poststimulation. These results suggest that dietary DHA supplementation facilitates synaptic plasticity following brief high-frequency stimulation. This increase in synaptic transmission might provide a physiological correlation for the improved spatial learning and memory observed following DHA supplementation.


Neuroscience ◽  
2019 ◽  
Vol 411 ◽  
pp. 237-254 ◽  
Author(s):  
Fangli Zhao ◽  
Jason J. Siu ◽  
Wei Huang ◽  
Candice Askwith ◽  
Lei Cao

1989 ◽  
Vol 236 (1284) ◽  
pp. 253-268 ◽  

Experiments have been made to follow the development of chemical and electrical transmission between pairs of leech neurons in culture. 1. The cell bodies of identified neurons were isolated from the CNS by suction after mild enzyme treatment, together with a length of the initial segment (or ‘stump’). The neurons tested were Retzius cells (R), annulus erector motoneurons (AE), Anterior pagoda cells (AP) and pressure sensory cells (P). Pairs of cells were placed together in various configurations, with different sites on their surfaces making contact. 2. When pairs of Retzius cells were apposed with their stumps touching, serotonergic, chemically mediated synaptic transmission became apparent before electrical transmission. By 2.5 h impulses in either of the two Retzius cells produced hyperpolarizing inhibitory potentials in the other. These potentials were reversed by raised intracellular CI and showed clear facilitation. The strength of chemical transmission between Retzius cells increased over the next 72 h. 3. After chemical transmission had been established, weak non-recti­fying electrical transmission became apparent between Retzius cells at about 24–72 h. By 4 days coupling became stronger and tended to obscure chemically evoked synaptic potentials. 4. When pairs of Retzius cells were aligned in culture with the tip of one cell stump touching the soma of the other, chemical transmission also developed rapidly. Transmission was, however, in one direction, from stump to soma. At later stages non-rectifying electrical coupling devel­oped as with stump-stump configuration. With the cell bodies of two Retzius cells apposed, electrical coupling developed after several days, before chemical transmission could be observed. 5. When Retzius and P cells were cultured with their stumps in con­tact, inhibitory chemical synaptic transmission developed within 24 h. Transmission was always in one direction, from Retzius to P cell. Electrical coupling of Retzius and P cells never occurred whatever the spatial relations of the cells to one another. 6. Annulus erector motoneurons, which contain ACh and a peptide resembling FMRFamide, first developed electrical coupling when the two stumps were in contact and then, later, bi-directional chemical transmission. Anterior Pagoda pairs placed stump-to-stump showed electrical connections. 7. Electronmicrographs revealed the presence of synaptic structures within24 h after Retzius-Retzius, Retzius-P or AE–AE stumps were apposed. 8. The specificity of connections between cultured cells was similar to that observed in earlier experiments. A marked difference was in the speed and reliability with which chemical synapses developed when stumps were in contact. The results show that the tip of a neuron represents a preferential site for the formation of chemical synapses.


1996 ◽  
Vol 76 (5) ◽  
pp. 2861-2871 ◽  
Author(s):  
J. Schmidt ◽  
J. W. Deitmer

1. We studied the effects of photoinactivation of neuropil glial (NG) cells of the leech Hirudo medicinalis on neuronal activity and synaptic transmission. Each segmental ganglion contains two of these giant glial cells, which are electrically and dye coupled. 2. One of the two NG cells in an isolated segmental ganglion was filled with the dye Lucifer yellow (LY). Subsequent irradiation of the ganglion with laser light (440 nm) to photolyze LY caused irreversible depolarization of both NG cells. The NG cells that were filled with LY depolarized from -73 +/- 1.1 (SE) mV to -22 +/- 2.4 mV within 25 +/- 2.8 min of continuous irradiation (n = 22). The other NG cell, which was not directly filled with LY, depolarized with some delay. 3. Photoinactivation of the NG cells caused an irreversible depolarization of Retzius neurons and noxious (N) sensory cells by a mean of 14 mV (n = 36) and 9 mV (n = 24), respectively. In addition, the input resistance was reduced by 54% in Retzius cells and by 34% in N cells. Spikes could not be evoked in Retzius cells after the inactivation of the NG cells, either by intracellular current injection or by electrical nerve stimulation. Similarly, anterior pagoda neurons, annulus erector neurons, and the excitor neurons of the ventrolateral circular muscles became inexcitable. However, N cells, heart interneurons, and most of the heart motor neurons, touch cells, and pressure cells could still generate spontaneous or evoked action potentials. 4. Photoinactivation of the NG cells impaired the electrical connection between the two Retzius neurons. The electrical coupling was completely eliminated in six of eight cell pairs and reduced by 66% in two others. 5. Photoinactivation of the NG cells in the 3rd and 4th segmental ganglion caused a complete block of the chemical synapse between reciprocal inhibitory heart interneurons in these ganglia; the bursting rhythm either stopped or changed to a tonic activity, whereas inhibitory postsynaptic potentials could not be recorded in either heart interneuron anymore. 6. Laser irradiation alone had no effect on neuronal activity and synaptic transmission. Addition of glutathione (10 mM) and ascorbic acid (10 mM) to the saline to bind extracellular radicals that might be produced by the irradiation did not suppress the effects caused by photoinactivation of NG cells. 7. Elevation of bath K+ concentration to 12 mM, acidification of the saline to pH 5.5, and alkalinization to pH 8.5 for 6 min each did not mimick the effects on membrane properties of Retzius cells as produced by inactivation of NG cells. The results suggest some role of glial cells in the maintenance of neuronal activity and electrical and chemical synaptic transmission.


Hippocampus ◽  
2018 ◽  
Vol 29 (6) ◽  
pp. 550-565 ◽  
Author(s):  
Max Anstötz ◽  
Meliha Karsak ◽  
Gabriele M. Rune

2015 ◽  
Vol 41 (7) ◽  
pp. 878-888 ◽  
Author(s):  
Francisco Q. Gonçalves ◽  
Johny Pires ◽  
Anna Pliassova ◽  
Rui Beleza ◽  
Cristina Lemos ◽  
...  

2015 ◽  
pp. bhv271 ◽  
Author(s):  
Max Anstötz ◽  
Hao Huang ◽  
Ivan Marchionni ◽  
Iris Haumann ◽  
Gianmaria Maccaferri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document