scholarly journals Four weeks of exercise early in life reprograms adult skeletal muscle insulin resistance caused by a paternal high‐fat diet

2018 ◽  
Vol 597 (1) ◽  
pp. 121-136 ◽  
Author(s):  
Filippe Falcão‐Tebas ◽  
Jujiao Kuang ◽  
Chelsea Arceri ◽  
Jarrod P. Kerris ◽  
Sofianos Andrikopoulos ◽  
...  
2018 ◽  
Vol 46 (1) ◽  
pp. 957-963 ◽  
Author(s):  
Baishali Alok Jana ◽  
Pavan Kumar Chintamaneni ◽  
Praveen Thaggikuppe Krishnamurthy ◽  
Ashish Wadhwani ◽  
Suresh Kumar Mohankumar

2015 ◽  
Vol 290 (21) ◽  
pp. 13427-13439 ◽  
Author(s):  
Alvaro Souto Padron de Figueiredo ◽  
Adam B. Salmon ◽  
Francesca Bruno ◽  
Fabio Jimenez ◽  
Herman G. Martinez ◽  
...  

2001 ◽  
Vol 281 (1) ◽  
pp. E62-E71 ◽  
Author(s):  
Charles Lavigne ◽  
Frédéric Tremblay ◽  
Geneviève Asselin ◽  
Hélène Jacques ◽  
André Marette

In the present study, we tested the hypothesis that fish protein may represent a key constituent of fish with glucoregulatory activity. Three groups of rats were fed a high-fat diet in which the protein source was casein, fish (cod) protein, or soy protein; these groups were compared with a group of chow-fed controls. High-fat feeding led to severe whole body and skeletal muscle insulin resistance in casein- or soy protein-fed rats, as assessed by the euglycemic clamp technique coupled with measurements of 2-deoxy-d-[3H]glucose uptake rates by individual tissues. However, feeding cod protein fully prevented the development of insulin resistance in high fat-fed rats. These animals exhibited higher rates of insulin-mediated muscle glucose disposal that were comparable to those of chow-fed rats. The beneficial effects of cod protein occurred without any reductions in body weight gain, adipose tissue accretion, or expression of tumor necrosis factor-α in fat and muscle. Moreover, L6 myocytes exposed to cod protein-derived amino acids showed greater rates of insulin-stimulated glucose uptake compared with cells incubated with casein- or soy protein-derived amino acids. These data demonstrate that feeding cod protein prevents obesity-induced muscle insulin resistance in high fat-fed obese rats at least in part through a direct action of amino acids on insulin-stimulated glucose uptake in skeletal muscle cells.


2019 ◽  
Vol 317 (2) ◽  
pp. E362-E373 ◽  
Author(s):  
Brian A. Grice ◽  
Kelly J. Barton ◽  
Jacob D. Covert ◽  
Alec M. Kreilach ◽  
Lixuan Tackett ◽  
...  

Skeletal muscle insulin resistance manifests shortly after high-fat feeding, yet mechanisms are not known. Here we set out to determine whether excess skeletal muscle membrane cholesterol and cytoskeletal derangement known to compromise glucose transporter (GLUT)4 regulation occurs early after high-fat feeding. We fed 6-wk-old male C57BL/6NJ mice either a low-fat (LF, 10% kcal) or a high-fat (HF, 45% kcal) diet for 1 wk. This HF feeding challenge was associated with an increase, albeit slight, in body mass, glucose intolerance, and hyperinsulinemia. Liver analyses did not reveal signs of hepatic insulin resistance; however, skeletal muscle immunoblots of triad-enriched regions containing transverse tubule membrane showed a marked loss of stimulated GLUT4 recruitment. An increase in cholesterol was also found in these fractions from HF-fed mice. These derangements were associated with a marked loss of cortical filamentous actin (F-actin) that is essential for GLUT4 regulation and known to be compromised by increases in membrane cholesterol. Both the withdrawal of the HF diet and two subcutaneous injections of the cholesterol-lowering agent methyl-β-cyclodextrin at 3 and 6 days during the 1-wk HF feeding intervention completely mitigated cholesterol accumulation, cortical F-actin loss, and GLUT4 dysregulation. Moreover, these beneficial membrane/cytoskeletal changes occurred concomitant with a full restoration of metabolic responses. These results identify skeletal muscle membrane cholesterol accumulation as an early, reversible, feature of insulin resistance and suggest cortical F-actin loss as an early derangement of skeletal muscle insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document