scholarly journals Heat Treatment Improves Glucose Tolerance and Prevents Skeletal Muscle Insulin Resistance in Rats Fed a High-Fat Diet

Diabetes ◽  
2008 ◽  
Vol 58 (3) ◽  
pp. 567-578 ◽  
Author(s):  
A. A. Gupte ◽  
G. L. Bomhoff ◽  
R. H. Swerdlow ◽  
P. C. Geiger
2018 ◽  
Vol 597 (1) ◽  
pp. 121-136 ◽  
Author(s):  
Filippe Falcão‐Tebas ◽  
Jujiao Kuang ◽  
Chelsea Arceri ◽  
Jarrod P. Kerris ◽  
Sofianos Andrikopoulos ◽  
...  

2018 ◽  
Vol 46 (1) ◽  
pp. 957-963 ◽  
Author(s):  
Baishali Alok Jana ◽  
Pavan Kumar Chintamaneni ◽  
Praveen Thaggikuppe Krishnamurthy ◽  
Ashish Wadhwani ◽  
Suresh Kumar Mohankumar

2015 ◽  
Vol 290 (21) ◽  
pp. 13427-13439 ◽  
Author(s):  
Alvaro Souto Padron de Figueiredo ◽  
Adam B. Salmon ◽  
Francesca Bruno ◽  
Fabio Jimenez ◽  
Herman G. Martinez ◽  
...  

2001 ◽  
Vol 281 (1) ◽  
pp. E62-E71 ◽  
Author(s):  
Charles Lavigne ◽  
Frédéric Tremblay ◽  
Geneviève Asselin ◽  
Hélène Jacques ◽  
André Marette

In the present study, we tested the hypothesis that fish protein may represent a key constituent of fish with glucoregulatory activity. Three groups of rats were fed a high-fat diet in which the protein source was casein, fish (cod) protein, or soy protein; these groups were compared with a group of chow-fed controls. High-fat feeding led to severe whole body and skeletal muscle insulin resistance in casein- or soy protein-fed rats, as assessed by the euglycemic clamp technique coupled with measurements of 2-deoxy-d-[3H]glucose uptake rates by individual tissues. However, feeding cod protein fully prevented the development of insulin resistance in high fat-fed rats. These animals exhibited higher rates of insulin-mediated muscle glucose disposal that were comparable to those of chow-fed rats. The beneficial effects of cod protein occurred without any reductions in body weight gain, adipose tissue accretion, or expression of tumor necrosis factor-α in fat and muscle. Moreover, L6 myocytes exposed to cod protein-derived amino acids showed greater rates of insulin-stimulated glucose uptake compared with cells incubated with casein- or soy protein-derived amino acids. These data demonstrate that feeding cod protein prevents obesity-induced muscle insulin resistance in high fat-fed obese rats at least in part through a direct action of amino acids on insulin-stimulated glucose uptake in skeletal muscle cells.


Endocrinology ◽  
2009 ◽  
Vol 150 (12) ◽  
pp. 5311-5317 ◽  
Author(s):  
Claudio Sartori ◽  
Pierre Dessen ◽  
Caroline Mathieu ◽  
Anita Monney ◽  
Jonathan Bloch ◽  
...  

Abstract Obesity and insulin resistance represent a problem of utmost clinical significance worldwide. Insulin-resistant states are characterized by the inability of insulin to induce proper signal transduction leading to defective glucose uptake in skeletal muscle tissue and impaired insulin-induced vasodilation. In various pathophysiological models, melatonin interacts with crucial molecules of the insulin signaling pathway, but its effects on glucose homeostasis are not known. In a diet-induced mouse model of insulin resistance and normal chow-fed control mice, we sought to assess the effects of an 8-wk oral treatment with melatonin on insulin and glucose tolerance and to understand underlying mechanisms. In high-fat diet-fed mice, but not in normal chow-fed control mice, melatonin significantly improved insulin sensitivity and glucose tolerance, as evidenced by a higher rate of glucose infusion to maintain euglycemia during hyperinsulinemic clamp studies and an attenuated hyperglycemic response to an ip glucose challenge. Regarding underlying mechanisms, we found that melatonin restored insulin-induced vasodilation to skeletal muscle, a major site of glucose utilization. This was due, at least in part, to the improvement of insulin signal transduction in the vasculature, as evidenced by increased insulin-induced phosphorylation of Akt and endoethelial nitric oxide synthase in aortas harvested from melatonin-treated high-fat diet-fed mice. In contrast, melatonin had no effect on the ability of insulin to promote glucose uptake in skeletal muscle tissue in vitro. These data demonstrate for the first time that in a diet-induced rodent model of insulin resistance, melatonin improves glucose homeostasis by restoring the vascular action of insulin.


Sign in / Sign up

Export Citation Format

Share Document