mitochondrial dysfunction
Recently Published Documents


TOTAL DOCUMENTS

7433
(FIVE YEARS 2481)

H-INDEX

163
(FIVE YEARS 23)

2022 ◽  
Vol 86 ◽  
pp. 102458
Author(s):  
Yasmin Silva Rizk ◽  
Daiana de Jesus Hardoim ◽  
Kaique Bertrand Almeida Santos ◽  
Tânia Zaverucha-do-Valle ◽  
Noemi Nosomi Taniwaki ◽  
...  

Author(s):  
Chukwuemeka Obi ◽  
Alexander T. Smith ◽  
Gregory J. Hughes ◽  
Adedayo A. Adeboye

Author(s):  
Guang‐Ying Cao ◽  
Chao Yang ◽  
Zhi‐Tao Jin ◽  
Han‐Wen Wei ◽  
Chao Xin ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Yufei Mo ◽  
Kelvin Kai-Wang To ◽  
Runhong Zhou ◽  
Li Liu ◽  
Tianyu Cao ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in rapid T lymphocytopenia and functional impairment of T cells. The underlying mechanism, however, remains incompletely understood. In this study, we focused on characterizing the phenotype and kinetics of T-cell subsets with mitochondrial dysfunction (MD) by multicolor flow cytometry and investigating the association between MD and T-cell functionality. While 73.9% of study subjects displayed clinical lymphocytopenia upon hospital admission, a significant reduction of CD4 or CD8 T-cell frequency was found in all asymptomatic, symptomatic, and convalescent cases. CD4 and CD8 T cells with increased MD were found in both asymptomatic and symptomatic patients within the first week of symptom onset. Lower proportion of memory CD8 T cell with MD was found in severe patients than in mild ones at the stage of disease progression. Critically, the frequency of T cells with MD in symptomatic patients was preferentially associated with CD4 T-cell loss and CD8 T-cell hyperactivation, respectively. Patients bearing effector memory CD4 and CD8 T cells with the phenotype of high MD exhibited poorer T-cell responses upon either phorbol 12-myristate-13-acetate (PMA)/ionomycin or SARS-CoV-2 peptide stimulation than those with low MD. Our findings demonstrated an MD-associated mechanism underlying SARS-CoV-2-induced T lymphocytopenia and functional impairment during the acute phase of infection.


Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 154
Author(s):  
Rajagopal V. Sekhar

Patients with type 2 diabetes (T2D) are known to have mitochondrial dysfunction and increased insulin resistance (IR), but the underlying mechanisms are not well understood. We reported previously that (a) adequacy of the antioxidant glutathione (GSH) is necessary for optimal mitochondrial fatty-acid oxidation (MFO); (b) supplementing the GSH precursors glycine and N-acetylcysteine (GlyNAC) in mice corrected GSH deficiency, reversed impaired MFO, and lowered oxidative stress (OxS) and IR; and (c) supplementing GlyNAC in patients with T2D improved GSH synthesis and concentrations, and lowered OxS. However, the effect of GlyNAC on MFO, MGO (mitochondrial glucose oxidation), IR and plasma FFA (free-fatty acid) concentrations in humans with T2D remains unknown. This manuscript reports the effect of supplementing GlyNAC for 14-days on MFO, MGO, IR and FFA in 10 adults with T2D and 10 unsupplemented non-diabetic controls. Fasted T2D participants had 36% lower MFO (p < 0.001), 106% higher MGO (p < 0.01), 425% higher IR (p < 0.001) and 76% higher plasma FFA (p < 0.05). GlyNAC supplementation significantly improved fasted MFO by 30% (p < 0.001), lowered MGO by 47% (p < 0.01), decreased IR by 22% (p < 0.01) and lowered FFA by 25% (p < 0.01). These results provide proof-of-concept that GlyNAC supplementation could improve mitochondrial dysfunction and IR in patients with T2D, and warrant additional research.


2022 ◽  
Author(s):  
Rabaa Takala ◽  
Dipak Ramji ◽  
Robert Andrews ◽  
You Zhou ◽  
Mustafa Farhat ◽  
...  

Abstract Objectives: Pinolenic acid (PNLA), an omega-6 polyunsaturated fatty acid from pine nuts, has anti-inflammatory and anti-atherogenic effects. We aimed to investigate the actions of PNLA on activated purified monocytes from peripheral blood of patients with rheumatoid arthritis (RA).Methods: Flow cytometry was used to assess the intracellular expression of TNF-α, IL-6, IL-1β, and IL-8 in purified monocytes from patients with RA after lipopolysaccharide (LPS) stimulation with/without PNLA pre-treatment. The whole genomic transcriptomic (WGT) profile of PNLA-treated, and LPS-activated monocytes from patients with active RA was investigated by RNA-sequencing.Results: PNLA reduced percentage of monocytes expressing the cytokines TNF-α by 23% (p=0.048), IL-6 by 25% (p=0.011), IL-1β by 23% (p=0.050) and IL-8 by 19% (p=0.066). Canonical pathway analysis showed that PNLA inhibited oxidative phosphorylation (p= 9.14E-09) and mitochondrial dysfunction (p=4.18E-08), while the sirtuin (SIRTs) signalling pathway was activated (p=8.89E-06). Pathway analysis predicted upstream activation of peroxisome proliferator-activated receptors (PPARs), sirtuin3, and let7miRNA, which are anti-inflammatory and antioxidative. In contrast, DAP3, LIF and STAT3, which are involved in TNF-α, and IL-6 signal transduction, were inhibited. Many miRNAs were modulated by PNLA suggesting potential post-transcriptional regulation of metabolic and immune response that has not been described previously. Multiple miRNAs target pyruvate dehydrogenase kinase-4 (PDK4), single-immunoglobulin interleukin-1 receptor-related molecule (SIGIRR), mitochondrially encoded ATP synthase membrane subunit 6 (MT-ATP6) and acetyl-CoA acyltransferase 2 (ACAA2); genes implicated in cell metabolism, inflammation, and mitochondrial dysfunction.Conclusion: PNLA has anti-inflammatory and immune-metabolic effects on monocytes that are pathogenic in RA and atherosclerosis. Dietary PNLA supplementation may regulate key miRNAs that are involved in mitochondrial, metabolic, and inflammatory pathways.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Seung-Eun Lee ◽  
Daekee Kwon ◽  
Nari Shin ◽  
Dasom Kong ◽  
Nam Gyo Kim ◽  
...  

AbstractMitochondrial dysfunction is associated with familial Alzheimer’s disease (fAD), and the accumulation of damaged mitochondria has been reported as an initial symptom that further contributes to disease progression. In the amyloidogenic pathway, the amyloid precursor protein (APP) is cleaved by β-secretase to generate a C-terminal fragment, which is then cleaved by γ-secretase to produce amyloid-beta (Aβ). The accumulation of Aβ and its detrimental effect on mitochondrial function are well known, yet the amyloid precursor protein-derived C-terminal fragments (APP-CTFs) contributing to this pathology have rarely been reported. We demonstrated the effects of APP-CTFs-related pathology using induced neural stem cells (iNSCs) from AD patient-derived fibroblasts. APP-CTFs accumulation was demonstrated to mainly occur within mitochondrial domains and to be both a cause and a consequence of mitochondrial dysfunction. APP-CTFs accumulation also resulted in mitophagy failure, as validated by increased LC3-II and p62 and inconsistent PTEN-induced kinase 1 (PINK1)/E3 ubiquitin ligase (Parkin) recruitment to mitochondria and failed fusion of mitochondria and lysosomes. The accumulation of APP-CTFs and the causality of impaired mitophagy function were also verified in AD patient-iNSCs. Furthermore, we confirmed this pathological loop in presenilin knockout iNSCs (PSEN KO-iNSCs) because APP-CTFs accumulation is due to γ-secretase blockage and similarly occurs in presenilin-deficient cells. In the present work, we report that the contribution of APP-CTFs accumulation is associated with mitochondrial dysfunction and mitophagy failure in AD patient-iNSCs as well as PSEN KO-iNSCs.


2022 ◽  
Author(s):  
Yujuan Qi ◽  
Zhenhua Wu ◽  
Yaobang Bai ◽  
Yan Jiao ◽  
Peijun Li

Objectives: Dilated cardiomyopathy (DCM) is a complex cardiovascular disease with unknown etiology. Although nuclear genes play active roles in DCM, mitochondrial dysfunction was believed to be involved in the pathogenesis of DCM. The objective of this study is to analysis the association between mitochondrial tRNA (mt-tRNA) mutations and DCM. Material and Methods: We performed a mutational analysis of mt-tRNA genes in a cohort of 318 patients with DCM and 200 age- and gender-matched control subjects. To further assess their pathogenicity, phylogenetic analysis and mitochondrial functions including mtDNA copy number, ATP and ROS were analyzed. Results: 7 possible pathogenic mutations: MT-TL1 3302A>G, MT-TI 4295A>G, MT-TM 4435A>G, MT-TA 5655T>C, MT-TH 12201T>C, MT-TE 14692A>G and MT-TT 15927G>A were identified in DCM group but absent in controls. These mutations occurred at extremely conserved nucleotides of corresponding tRNAs, and led to the failure in tRNAs metabolism. Moreover, a significant reduction in ATP and mtDNA copy number, whereas a markedly increased in ROS level were observed in polymononuclear leukocytes (PMNs) derived from the DCM patients carrying these mt-tRNA mutations, suggesting that these mutations may cause mitochondrial dysfunction that was responsible for DCM. Conclusions: Our data indicated that mt-tRNA mutations may be the molecular basis for DCM, which shaded novel insight into the pathophysiology of DCM that was manifestated by mitochondrial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document