scholarly journals Vasodilatory function in human skeletal muscle feed arteries with advancing age: the role of adropin

2019 ◽  
Vol 597 (7) ◽  
pp. 1791-1804 ◽  
Author(s):  
Oh Sung Kwon ◽  
Robert H. I. Andtbacka ◽  
John R. Hyngstrom ◽  
Russell S. Richardson
2014 ◽  
Vol 46 ◽  
pp. 328-329
Author(s):  
Jayson R. Gifford ◽  
Stephen J. Ives ◽  
Song Y. Park ◽  
Robert H.I. Andtbacka ◽  
Joel D. Trinity ◽  
...  

2012 ◽  
Vol 113 (11) ◽  
pp. 1690-1698 ◽  
Author(s):  
Stephen J. Ives ◽  
Robert H. I. Andtbacka ◽  
Sun Hyung Kwon ◽  
Yan-Ting Shiu ◽  
Ting Ruan ◽  
...  

Increased local temperature exerts a sympatholytic effect on human skeletal muscle feed arteries. We hypothesized that this attenuated α1-adrenergic receptor responsiveness may be due to a temperature-induced increase in nitric oxide (NO) bioavailability, thereby reducing the impact of the α1-adrenergic receptor agonist phenylephrine (PE). Thirteen human skeletal muscle feed arteries were harvested, and wire myography was used to generate PE concentration-response curves at 37°C and 39°C, with and without the NO synthase (NOS) inhibitor NG-monomethyl-l-arginine (l-NMMA). A subset of arteries ( n = 4) were exposed to 37°C or 39°C, and the protein content of endothelial NOS (eNOS) and α1-adrenergic receptors was determined by Western blot analysis. Additionally, cultured bovine endothelial cells were exposed to static or shear stress conditions at 37°C and 39°C and assayed for eNOS activation (phosphorylation at Ser1177), eNOS expression, and NO metabolites [nitrate + nitrite (NOx)]. Maximal PE-induced vasocontraction (PEmax) was lower at 39°C than at 37°C [39 ± 10 vs. 84 ± 30% maximal response to 100 mM KCl (KClmax)]. NO blockade restored vasocontraction at 39°C to that achieved at 37°C (80 ± 26% KClmax). Western blot analysis of the feed arteries revealed that heating increased eNOS protein, but not α1-adrenergic receptors. Heating of bovine endothelial cells resulted in greater shear stress-induced eNOS activation and NOx production. Together, these data reveal for the first time that, in human skeletal muscle feed arteries, NO blockade can restore the heat-attenuated α1-adrenergic receptor-mediated vasocontraction and implicate endothelium-derived NO bioavailability as a major contributor to heat-induced sympatholysis. Consequently, these findings highlight the important role of vasodilators in modulating the vascular response to vasoconstrictors.


2014 ◽  
Vol 307 (9) ◽  
pp. H1288-H1297 ◽  
Author(s):  
Jayson R. Gifford ◽  
Stephen J. Ives ◽  
Song-Young Park ◽  
Robert H. I. Andtbacka ◽  
John R. Hyngstrom ◽  
...  

The purpose of this study was to determine if heat inhibits α2-adrenergic vasocontraction, similarly to α1-adrenergic contraction, in isolated human skeletal muscle feed arteries (SMFA) and elucidate the role of the temperature-sensitive vanilloid-type transient receptor potential (TRPV) ion channels in this response. Isolated SMFA from 37 subjects were studied using wire myography. α1 [Phenylephrine (PE)]- and α2 [dexmedetomidine (DEX)]-contractions were induced at 37 and 39°C with and without TRPV family and TRPV4-specific inhibition [ruthenium red (RR) and RN-1734, respectively]. Endothelial function [acetylcholine (ACh)] and smooth muscle function [sodium nitroprusside (SNP) and potassium chloride (KCl)] were also assessed under these conditions. Heat and TRPV inhibition was further examined in endothelium-denuded arteries. Contraction data are reported as a percentage of maximal contraction elicited by 100 mM KCl (LTmax). DEX elicited a small and variable contractile response, one-fifth the magnitude of PE, which was not as clearly attenuated when heated from 37 to 39°C (12 ± 4 to 6 ± 2% LTmax; P = 0.18) as were PE-induced contractions (59 ± 5 to 24 ± 4% LTmax; P < 0.05). Both forms of TRPV inhibition restored PE-induced contraction at 39°C (P < 0.05) implicating these channels, particularly the TRPV4 channels, in the heat-induced attenuation of α1-adrenergic vasocontraction. TRPV inhibition significantly blunted ACh relaxation while denudation prevented heat-induced sympatholysis without having an additive effect when combined with TRPV inhibition. In conclusion, physiological increases in temperature elicit a sympatholysis-like inhibition of α1-adrenergic vasocontraction in human SMFA that appears to be mediated by endothelial TRPV4 ion channels.


2016 ◽  
Vol 48 ◽  
pp. 198
Author(s):  
Oh Sung Kwon ◽  
Song-Young Park ◽  
Robert H. I Andtbacka ◽  
John R. Hyngstrom ◽  
Van Reese ◽  
...  

2017 ◽  
Vol 102 (9) ◽  
pp. 1245-1258 ◽  
Author(s):  
Stephen J. Ives ◽  
Song Young Park ◽  
Oh Sung Kwon ◽  
Jayson R. Gifford ◽  
Robert H. I. Andtbacka ◽  
...  

2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Stephen James Ives ◽  
Robert Hans Ingemar Andtbacka ◽  
R. Dirk Noyes ◽  
Anthony Donato ◽  
Song Young Park ◽  
...  

2012 ◽  
Vol 98 (1) ◽  
pp. 256-267 ◽  
Author(s):  
Stephen J. Ives ◽  
Robert H. I. Andtbacka ◽  
R. Dirk Noyes ◽  
R. Garrett Morgan ◽  
Jayson R. Gifford ◽  
...  

2012 ◽  
Vol 206 (2) ◽  
pp. 135-141 ◽  
Author(s):  
S. J. Ives ◽  
R. H. I. Andtbacka ◽  
S.-Y. Park ◽  
A. J. Donato ◽  
J. R. Gifford ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document