feed arteries
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 5)

H-INDEX

28
(FIVE YEARS 2)

2020 ◽  
pp. 1-11 ◽  
Author(s):  
Emilie Vessieres ◽  
Anne-Laure Guihot ◽  
Linda Grimaud ◽  
Jordan Rivron ◽  
Jean-François Arnal ◽  
...  

Flow-mediated outward remodeling (FMR) is involved in postischemic revascularization. Angiotensin II type 2 receptor (AT2R), through activation of T-cell-mediated IL-17 production, and estrogens are involved in FMR. Thus, we investigated the interplay between estrogens and AT2R in FMR using a model of ligation of feed arteries supplying collateral pathways in mouse mesenteric arteries in vivo. Arteries were collected after 2 (inflammatory phase), 4 (diameter expansion phase), and 7 days (remodeling completed). We used AT2R<sup>+/+</sup> and AT2R<sup>−/−</sup> ovariectomized (OVX) female mice treated or not with 17-beta-estradiol (E2). Seven days after ligation, arterial diameter was larger in high flow (HF) compared to normal flow (NF) arteries. FMR was absent in OVX mice and restored by E2. AT2R gene expression was higher in HF than in NF arteries only in E2-treated OVX AT2R<sup>+/+</sup> mice. CD11b and TNF alpha levels (inflammatory phase), MMP2 and TIMP1 (extracellular matrix digestion), and NOS3 (diameter expansion phase) expression levels were higher in HF than in NF arteries only in E2-treated AT2R<sup>+/+</sup> mice, not in the other groups. Thus, E2 is necessary for AT2R-dependent diameter expansion, possibly through activation of T-cell AT2R, in arteries submitted chronically to high blood flow.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Song Yi Shin ◽  
John Seawright ◽  
Andreea Trache ◽  
Christopher Woodman

2019 ◽  
Vol 597 (7) ◽  
pp. 1791-1804 ◽  
Author(s):  
Oh Sung Kwon ◽  
Robert H. I. Andtbacka ◽  
John R. Hyngstrom ◽  
Russell S. Richardson

2019 ◽  
Vol 316 (1) ◽  
pp. H245-H254 ◽  
Author(s):  
Ninna C. S. Voss ◽  
Henrik Kold-Petersen ◽  
Ebbe Boedtkjer

Inadequate perfusion of solid cancer tissue results in low local nutrient and oxygen levels and accumulation of acidic waste products. Previous investigations have focused primarily on tumor blood vessel architecture, and we lack information concerning functional differences between arteries that deliver blood to solid cancer tissue versus normal tissue. Here, we use isometric myography to study resistance-sized arteries from human primary colon adenocarcinomas and matched normal colon tissue. Vasocontraction of colon cancer feed arteries in response to endothelin-1 and thromboxane stimulation is attenuated compared with normal colon arteries despite similar wall dimensions and comparable contractions to arginine vasopressin and K+-induced depolarization. Acetylcholine-induced vasorelaxation and endothelial NO synthase expression are increased in colon cancer feed arteries compared with normal colon arteries, whereas vasorelaxation to exogenous NO donors is unaffected. In congruence, the differences in vasorelaxant and vasocontractile function between colon cancer feed arteries and normal colon arteries decrease after NO synthase inhibition. Rhythmic oscillations in vascular tone, known as vasomotion, are of lower amplitude but similar frequency in colon cancer feed arteries compared with normal colon arteries. In conclusion, higher NO synthase expression and elevated NO signaling amplify vasorelaxation and attenuate vasocontraction of human colon cancer feed arteries. We propose that enhanced endothelial function augments tumor perfusion and represents a potential therapeutic target. NEW & NOTEWORTHY Local vascular resistance influences tumor perfusion. Arteries supplying human colonic adenocarcinomas show enhanced vasorelaxation and reduced vasocontraction mainly due to elevated nitric oxide-mediated signaling. Rhythmic oscillations in tone, known as vasomotion, are attenuated in colon cancer feed arteries.


2018 ◽  
Vol 125 (6) ◽  
pp. 1851-1859 ◽  
Author(s):  
Matthew J. Socha ◽  
Steven S. Segal

Effective oxygen delivery to active muscle fibers requires that vasodilation initiated in distal arterioles, which control flow distribution and capillary perfusion, ascends the resistance network into proximal arterioles and feed arteries, which govern total blood flow into the muscle. With exercise onset, ascending vasodilation reflects initiation and conduction of hyperpolarization along endothelium from arterioles into feed arteries. Electrical coupling of endothelial cells to smooth muscle cells evokes the rapid component of ascending vasodilation, which is sustained by ensuing release of nitric oxide during elevated luminal shear stress. Concomitant sympathetic neural activation inhibits ascending vasodilation by stimulating α-adrenoreceptors on smooth muscle cells to constrict the resistance vasculature. We hypothesized that compromised muscle blood flow in advanced age reflects impaired ascending vasodilation through actions on both cell layers of the resistance network. In the gluteus maximus muscle of old (24 mo) vs. young (4 mo) male mice (corresponding to mid-60s vs. early 20s in humans) inhibition of α-adrenoreceptors in old mice restored ascending vasodilation, whereas even minimal activation of α-adrenoreceptors in young mice attenuated ascending vasodilation in the manner seen with aging. Conduction of hyperpolarization along the endothelium is impaired in old vs. young mice because of “leaky” membranes resulting from the activation of potassium channels by hydrogen peroxide released from endothelial cells. Exposing the endothelium of young mice to hydrogen peroxide recapitulates this effect of aging. Thus enhanced α-adrenoreceptor activation of smooth muscle in concert with electrically leaky endothelium restricts muscle blood flow by impairing ascending vasodilation in advanced age.


2018 ◽  
Vol 9 ◽  
Author(s):  
John W. Seawright ◽  
Harini Sreenivasappa ◽  
Holly C. Gibbs ◽  
Samuel Padgham ◽  
Song Y. Shin ◽  
...  

2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Madelyn Whitaker ◽  
Tanner Heckle ◽  
Jeffrey Jasperse
Keyword(s):  

2018 ◽  
Vol 20 (1) ◽  
Author(s):  
Anne Sofie Froelunde ◽  
Marit Ohlenbusch ◽  
Kristoffer B. Hansen ◽  
Nicolai Jessen ◽  
Sukhan Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document