extracellular ph
Recently Published Documents


TOTAL DOCUMENTS

859
(FIVE YEARS 100)

H-INDEX

70
(FIVE YEARS 6)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Clément Adam ◽  
Léa Paolini ◽  
Naïg Gueguen ◽  
Guillaume Mabilleau ◽  
Laurence Preisser ◽  
...  

AbstractLactic acidosis, the extracellular accumulation of lactate and protons, is a consequence of increased glycolysis triggered by insufficient oxygen supply to tissues. Macrophages are able to differentiate from monocytes under such acidotic conditions, and remain active in order to resolve the underlying injury. Here we show that, in lactic acidosis, human monocytes differentiating into macrophages are characterized by depolarized mitochondria, transient reduction of mitochondrial mass due to mitophagy, and a significant decrease in nutrient absorption. These metabolic changes, resembling pseudostarvation, result from the low extracellular pH rather than from the lactosis component, and render these cells dependent on autophagy for survival. Meanwhile, acetoacetate, a natural metabolite produced by the liver, is utilized by monocytes/macrophages as an alternative fuel to mitigate lactic acidosis-induced pseudostarvation, as evidenced by retained mitochondrial integrity and function, retained nutrient uptake, and survival without the need of autophagy. Our results thus show that acetoacetate may increase tissue tolerance to sustained lactic acidosis.


2021 ◽  
Author(s):  
Guillaume Terradot ◽  
Ekaterina Krasnopeeva ◽  
Peter S. Swain ◽  
Teuta Pilizota

Maintaining intracellular homeostases is a hallmark of life, and key physiological variables, such as cytoplasmic pH, osmotic pressure, and proton motive force (PMF), are typically interdependent. Developing a mathematical model focused on these links, we predict that Escherichia coli uses proton-ion antiporters to generate an out-of-equilibrium plasma membrane potential and so maintain the PMF at the constant levels observed. The strength of the PMF consequently determines the range of extracellular pH over which the cell is able to preserve its near neutral cytoplasmic pH. In support, we concurrently measure the PMF and cytoplasmic pH in single cells and demonstrate both that decreasing the PMF's strength impairs E. coli's ability to maintain its pH and that artificially collapsing the PMF destroys the out-of-equilibrium plasma membrane potential. We further predict the observed ranges of extracellular pH for which three of E. coli's antiporters are expressed, through defining their cost by the rate at which they divert imported protons from generating ATP. Taken together, our results suggest a new perspective on bacterial electrophysiology, where cells regulate the plasma membrane potential by changing the activities of antiporters to maintain both the PMF and cytoplasmic pH.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12227
Author(s):  
Franco Cicconetti ◽  
Piero Sestili ◽  
Valeria Madiai ◽  
Maria Cristina Albertini ◽  
Luigi Campanella ◽  
...  

The COVID-19 pandemic and its virus variants continue to pose a serious and long-lasting threat worldwide. To combat the pandemic, the world’s largest COVID-19 vaccination campaign is currently ongoing. As of July 19th 2021, 26.2% of the world population has received at least one dose of a COVID-19 vaccine (1.04 billion), and one billion has been fully vaccinated, with very high vaccination rates in countries like Israel, Malta, and the UEA. Conversely, only 1% of people in low-income countries have received at least one dose with examples of vaccination frequency as low as 0.07% in the Democratic Republic of Congo. It is thus of paramount importance that more research on alternate methods to counter cell infection and propagation is undertaken that could be implemented in low-income countries. Moreover, an adjunctive therapeutic intervention would help to avoid disease exacerbation in high-rate vaccinated countries too. Based on experimental biochemical evidence on viral cell fusion and propagation, herein we identify (i) extracellular pH (epH), (ii) temperature, and (iii) humidity and osmolarity as critical factors. These factors are here in discussed along with their implications on mucus thick layer, proteases, abundance of sialic acid, vascular permeability and exudate/edema. Heated, humidified air containing sodium bicarbonate has long been used in the treatment of certain diseases, and here we argue that warm inhalation of sodium bicarbonate might successfully target these endpoints. Although we highlight the molecular/cellular basis and the signalling pathways to support this intervention, we underscore the need for clinical investigations to encourage further research and clinical trials. In addition, we think that such an approach is also important in light of the high mutation rate of this virus originating from a rapid increase.


Author(s):  
Lihui Yang ◽  
Xiaobo Liu ◽  
Bing Yin ◽  
Xunxun Deng ◽  
Xiaotong Lin ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Frank S Choveau ◽  
Ismail Ben Soussia ◽  
Delphine Bichet ◽  
Chatelain C. Franck ◽  
Sylvain Feliciangeli ◽  
...  

Inhibitory potassium channels of the TREK1/TRAAK family are integrators of multiple stimuli, including temperature, membrane stretch, polyunsaturated fatty acids and pH. How these signals affect the gating of these channels is the subject of intense research. We have previously identified a cytoplasmic domain, pCt, which plays a major role in controlling channel activity. Here, we use pharmacology to show that the effects of pCt, arachidonic acid, and extracellular pH converge to the same gate within the channel. Using a state-dependent inhibitor, fluoxetine, as well as natural and synthetic openers, we provide further evidence that the “up” and “down” conformations identified by crystallography do not correspond to open and closed states of these channels.


Biosensors ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 340
Author(s):  
Alexander S. Goryashchenko ◽  
Alexey A. Pakhomov ◽  
Anastasia V. Ryabova ◽  
Igor D. Romanishkin ◽  
Eugene G. Maksimov ◽  
...  

The determination of pH in live cells and tissues is of high importance in physiology and cell biology. In this report, we outline the process of the creation of SypHerExtra, a genetically encoded fluorescent sensor that is capable of measuring extracellular media pH in a mildly alkaline range. SypHerExtra is a protein created by fusing the previously described pH sensor SypHer3s with the neurexin transmembrane domain that targets its expression to the cytoplasmic membrane. We showed that with excitation at 445 nm, the fluorescence lifetime of both SypHer3s and SypHerExtra strongly depend on pH. Using FLIM microscopy in live eukaryotic cells, we demonstrated that SypHerExtra can be successfully used to determine extracellular pH, while SypHer3s can be applied to measure intracellular pH. Thus, these two sensors are suitable for quantitative measurements using the FLIM method, to determine intracellular and extracellular pH in a range from pH 7.5 to 9.5 in different biological systems.


2021 ◽  
Author(s):  
Victoria Bidiuk ◽  
Alexander Alexandrov ◽  
Airat Valiakhmetov

Abstract Extracellular pH has a significant impact on the physiology of the yeast cell, but its role in cell death has not been thoroughly investigated. We studied the effect of extracellular pH on the development of primary necrosis in Saccharomyces cerevisiae yeast under two general conditions leading to cell death. The first is sugar induced cell death (SICD), and the second is death caused by several specific gene deletions, which have been recently identified in a systematic screen. It was shown that in both cases, primary necrosis is suppressed at neutral pH. SICD was also inhibited by the protonophore dinitrophenol (DNP) and 150 mM extracellular K+, with the latter condition also benefiting survival of cell dying due to gene mutations. Thus, we show that neutral pH can suppress different types of primary necrosis. We suggest that changes to the cellular membrane potential can play a central role in yeast cell death.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Daniel Bikle ◽  
Hans Bräuner-Osborne ◽  
Edward M. Brown ◽  
Wenhan Chang ◽  
Arthur Conigrave ◽  
...  

The calcium-sensing receptor (CaS, provisional nomenclature as recommended by NC-IUPHAR [47] and subsequently updated [77]) responds to multiple endogenous ligands, including extracellular calcium and other divalent/trivalent cations, polyamines and polycationic peptides, L-amino acids (particularly L-Trp and L-Phe), glutathione and various peptide analogues, ionic strength and extracellular pH (reviewed in [78]). While divalent/trivalent cations, polyamines and polycations are CaS receptor agonists [14, 110], L-amino acids, glutamyl peptides, ionic strength and pH are allosteric modulators of agonist function [36, 47, 61, 108, 109]. Indeed, L-amino acids have been identified as "co-agonists", with both concomitant calcium and L-amino acid binding required for full receptor activation [148, 54]. The sensitivity of the CaS receptor to primary agonists is increased by elevated extracellular pH [18] or decreased extracellular ionic strength [109]. This receptor bears no sequence or structural relation to the plant calcium receptor, also called CaS.


Sign in / Sign up

Export Citation Format

Share Document