scholarly journals Interactions between multiple sources of short-term plasticity during evoked and spontaneous activity at the rat calyx of Held

2008 ◽  
Vol 586 (13) ◽  
pp. 3129-3146 ◽  
Author(s):  
Matthias H. Hennig ◽  
Michael Postlethwaite ◽  
Ian D. Forsythe ◽  
Bruce P. Graham
2002 ◽  
Vol 3 (1) ◽  
pp. 53-64 ◽  
Author(s):  
Henrique von Gersdorff ◽  
J. Gerard G. Borst

2008 ◽  
Vol 174 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Martin D. Haustein ◽  
Thomas Reinert ◽  
Annika Warnatsch ◽  
Bernhard Englitz ◽  
Beatrice Dietz ◽  
...  

2007 ◽  
Vol 70 (10-12) ◽  
pp. 1626-1629 ◽  
Author(s):  
Matthias H. Hennig ◽  
Michael Postlethwaite ◽  
Ian D. Forsythe ◽  
Bruce P. Graham

2011 ◽  
Vol 31 (32) ◽  
pp. 11706-11717 ◽  
Author(s):  
T. T. H. Crins ◽  
S. I. Rusu ◽  
A. Rodriguez-Contreras ◽  
J. G. G. Borst

2021 ◽  
Vol 118 (3) ◽  
pp. e2022551118
Author(s):  
Ermis Pofantis ◽  
Erwin Neher ◽  
Thomas Dresbach

Neurotransmitter release occurs by regulated exocytosis from synaptic vesicles (SVs). Evolutionarily conserved proteins mediate the essential aspects of this process, including the membrane fusion step and priming steps that make SVs release-competent. Unlike the proteins constituting the core fusion machinery, the SV protein Mover does not occur in all species and all synapses. Its restricted expression suggests that Mover may modulate basic aspects of transmitter release and short-term plasticity. To test this hypothesis, we analyzed synaptic transmission electrophysiologically at the mouse calyx of Held synapse in slices obtained from wild-type mice and mice lacking Mover. Spontaneous transmission was unaffected, indicating that the basic release machinery works in the absence of Mover. Evoked release and vesicular release probability were slightly reduced, and the paired pulse ratio was increased in Mover knockout mice. To explore whether Mover’s role is restricted to certain subpools of SVs, we analyzed our data in terms of two models of priming. A model assuming two SV pools in parallel showed a reduced release probability of so-called “superprimed vesicles” while “normally primed” ones were unaffected. For the second model, which holds that vesicles transit sequentially from a loosely docked state to a tightly docked state before exocytosis, we found that knocking out Mover selectively decreased the release probability of tight state vesicles. These results indicate that Mover regulates a subclass of primed SVs in the mouse calyx of Held.


Sign in / Sign up

Export Citation Format

Share Document