scholarly journals Overexpression of synapsin Ia in the rat calyx of Held accelerates short-term plasticity and decreases synaptic vesicle volume and active zone area

Author(s):  
Mariya Vasileva ◽  
Robert Renden ◽  
Heinz Horstmann ◽  
Daniel Gitler ◽  
Thomas Kuner
2002 ◽  
Vol 3 (1) ◽  
pp. 53-64 ◽  
Author(s):  
Henrique von Gersdorff ◽  
J. Gerard G. Borst

2008 ◽  
Vol 586 (13) ◽  
pp. 3129-3146 ◽  
Author(s):  
Matthias H. Hennig ◽  
Michael Postlethwaite ◽  
Ian D. Forsythe ◽  
Bruce P. Graham

2008 ◽  
Vol 174 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Martin D. Haustein ◽  
Thomas Reinert ◽  
Annika Warnatsch ◽  
Bernhard Englitz ◽  
Beatrice Dietz ◽  
...  

2020 ◽  
Author(s):  
Zhuo Guan ◽  
Mónica C. Quiñones-Frías ◽  
Yulia Akbergenova ◽  
J. Troy Littleton

AbstractSynchronous neurotransmitter release is triggered by Ca2+ binding to the synaptic vesicle protein Synaptotagmin 1, while asynchronous fusion and short-term facilitation is hypothesized to be mediated by plasma membrane-localized Synaptotagmin 7 (SYT7). We generated mutations in Drosophila Syt7 to determine if it plays a conserved role as the Ca2+ sensor for these processes. Electrophysiology and quantal imaging revealed evoked release was elevated 2-fold. Syt7 mutants also had a larger pool of readily-releasable vesicles, faster recovery following stimulation, and robust facilitation. Syt1/Syt7 double mutants displayed more release than Syt1 mutants alone, indicating SYT7 does not mediate the residual asynchronous release remaining in the absence of SYT1. SYT7 localizes to an internal membrane tubular network within the peri-active zone, but does not enrich at release sites. These findings indicate the two Ca2+ sensor model of SYT1 and SYT7 mediating all phases of neurotransmitter release and facilitation is not applicable at Drosophila synapses.


2021 ◽  
Vol 118 (28) ◽  
pp. e2106621118
Author(s):  
Niklas Krick ◽  
Stefanie Ryglewski ◽  
Aylin Pichler ◽  
Arthur Bikbaev ◽  
Torsten Götz ◽  
...  

Synaptic vesicle (SV) release, recycling, and plastic changes of release probability co-occur side by side within nerve terminals and rely on local Ca2+ signals with different temporal and spatial profiles. The mechanisms that guarantee separate regulation of these vital presynaptic functions during action potential (AP)–triggered presynaptic Ca2+ entry remain unclear. Combining Drosophila genetics with electrophysiology and imaging reveals the localization of two different voltage-gated calcium channels at the presynaptic terminals of glutamatergic neuromuscular synapses (the Drosophila Cav2 homolog, Dmca1A or cacophony, and the Cav1 homolog, Dmca1D) but with spatial and functional separation. Cav2 within active zones is required for AP-triggered neurotransmitter release. By contrast, Cav1 localizes predominantly around active zones and contributes substantially to AP-evoked Ca2+ influx but has a small impact on release. Instead, L-type calcium currents through Cav1 fine-tune short-term plasticity and facilitate SV recycling. Separate control of SV exo- and endocytosis by AP-triggered presynaptic Ca2+ influx through different channels demands efficient measures to protect the neurotransmitter release machinery against Cav1-mediated Ca2+ influx. We show that the plasma membrane Ca2+ ATPase (PMCA) resides in between active zones and isolates Cav2-triggered release from Cav1-mediated dynamic regulation of recycling and short-term plasticity, two processes which Cav2 may also contribute to. As L-type Cav1 channels also localize next to PQ-type Cav2 channels within axon terminals of some central mammalian synapses, we propose that Cav2, Cav1, and PMCA act as a conserved functional triad that enables separate control of SV release and recycling rates in presynaptic terminals.


2001 ◽  
Vol 21 (12) ◽  
pp. 4195-4206 ◽  
Author(s):  
Yann Humeau ◽  
Frédéric Doussau ◽  
Francesco Vitiello ◽  
Paul Greengard ◽  
Fabio Benfenati ◽  
...  

2007 ◽  
Vol 70 (10-12) ◽  
pp. 1626-1629 ◽  
Author(s):  
Matthias H. Hennig ◽  
Michael Postlethwaite ◽  
Ian D. Forsythe ◽  
Bruce P. Graham

Neuron ◽  
2013 ◽  
Vol 79 (1) ◽  
pp. 82-96 ◽  
Author(s):  
Noa Lipstein ◽  
Takeshi Sakaba ◽  
Benjamin H. Cooper ◽  
Kun-Han Lin ◽  
Nicola Strenzke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document