Gas Supply Reliability Analysis of a Natural Gas Pipeline System Considering the Effects of Demand Side Management

2021 ◽  
Author(s):  
Yichen Li ◽  
Yichen Li ◽  
Weichao Yu ◽  
Weihe Huang Huang ◽  
Kai Wen
2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Yichen Li ◽  
Jing Gong ◽  
Weichao Yu ◽  
Weihe Huang ◽  
Kai Wen

Abstract At present, China has a developing natural gas market, and ensuring the security of gas supply is an issue of high concern. Gas supply reliability, the natural gas pipeline system's ability to satisfy the market demand, is determined by both supply side and demand side and is usually adopted by the researches to measure the security of gas supply. In the previous study, the demand side is usually simplified by using load duration curve (LDC) to describe the demand, which neglects the effect of demand side management. The simplification leads to the inaccurate and unreasonable assessment of the gas supply reliability, especially in high-demand situation. To overcome this deficiency and achieve a more reasonable result of gas supply reliability, this paper extends the previous study on demand side by proposing a novel method of management on natural gas demand side, and the effects of demand side management on gas supply reliability is analyzed. The management includes natural gas prediction models for different types of users, the user classification rule, and the demand adjustment model based on user classification. First, an autoregressive integrated moving average (ARIMA) model and a support vector machine (SVM) model are applied to predict the natural gas demand for different types of users, such as urban gas distributor (including residential customer, commercial customer, small industrial customer), power plant, large industrial customer, and compressed natural gas (CNG) station. Then, the user classification rule is built based on users' attribute and impact of supplied gas's interruption or reduction. Natural gas users are classified into four levels. (1) demand fully satisfied, (2) demand slightly reduced, (3) demand reduced, and (4) demand interrupted. The user classification rule also provides the demand reduction range of different users. Moreover, the optimization model of demand adjustment is built, and the objective of the model is to maximize the amount of gas supplied to each user based on the classification rule. The constraints of the model are determined by the classification rule, including the demand reduction range of different users. Finally, the improved method of gas supply reliability assessment is developed and is applied to the case study of our previous study derived from a realistic natural gas pipeline system operated by PetroChina to analyze the effects of demand side management on natural gas pipeline system's gas supply reliability.


Author(s):  
Yichen Li ◽  
Jing Gong ◽  
Weichao Yu ◽  
Weihe Huang ◽  
Kai Wen

Abstract At present, China has a developing natural gas market, and ensuring the security of gas supply is an issue of high concern. Gas supply reliability, the natural gas pipeline system’s ability to satisfy the market demand, is determined by both supply side and demand side, and is usually adopted by the researches to measure the security of gas supply. In the previous study, the demand side is usually simplified by using load duration curve (LDC) to describe the demand, which neglects the effect of demand side management. The simplification leads to the inaccurate and unreasonable assessment of the gas supply reliability, especially in high demand situation. To overcome this deficiency and achieve a more reasonable result of gas supply reliability, this paper extends the previous study on demand side by proposing a novel method of management on natural gas demand side, and the effects of demand side management on gas supply reliability is analyzed. The management includes natural gas prediction models for different types of users, the user classification rule, and the demand adjustment model based on user classification. Firstly, An autoregressive integrated moving average (ARIMA) model and a support vector machine (SVM) model are applied to predict the natural gas demand for different types of users, such as urban gas distributor (including residential customer, commercial customer, small industrial customer), power plant, large industrial customer, and Compressed Natural Gas (CNG) station. Then, the user classification rule is built based on users’ attribute and impact of supplied gas’s interruption or reduction. Natural gas users are classified into four levels. (1) Demand Fully Satisfied; (2) Demand Slightly Reduced; (3) Demand Reduced; (4) Demand Interrupted. The user classification rule also provides the demand reduction range of different users. Moreover, the optimization model of demand adjustment is built, and the objective of the model is to maximize the amount of gas supply for each user based on the classification rule. The constraints of the model are determined by the classification rule, including the demand reduction range of different users. Finally, the improved method of gas supply reliability assessment is developed, and is applied to the case study of our previous study derived from a realistic natural gas pipeline system operated by PetroChina to analyze the effects of demand side management on natural gas pipeline system’s gas supply reliability.


2019 ◽  
Vol 252 ◽  
pp. 113418 ◽  
Author(s):  
Weichao Yu ◽  
Jing Gong ◽  
Shangfei Song ◽  
Weihe Huang ◽  
Yichen Li ◽  
...  

2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Weichao Yu ◽  
Jing Gong ◽  
Weihe Huang ◽  
Hongfei Liu ◽  
Fuhua Dang ◽  
...  

Abstract Reliability of the natural gas pipeline network is related to security of gas supply directly. According to the different required functions of the natural gas pipeline network, its reliability is divided into three aspects, namely mechanical reliability, hydraulic reliability, and gas supply reliability. However, most of the previous studies confused the definitions of the hydraulic reliability and gas supply reliability. Moreover, the uncertainty in the process of supplying natural gas to the targeted market and the hydraulic characteristic of the natural gas pipeline network are often ignored. Therefore, a methodology to assess hydraulic reliability and gas supply reliability of the natural gas pipeline network is developed in the study, and the uncertainty and hydraulic characteristic of the natural gas pipeline network are both considered. The methodology consists of four parts: establishment of the indicator system, calculation of the gas supply, prediction of the market demand, and assessment of the hydraulic reliability and gas supply reliability. Moreover, a case study is applied to confirm the feasibility of the methodology, and the reliability evaluation results provide a comprehensive picture about the abilities of the natural gas pipeline network to perform the specified gas supply function and satisfy consumers' demand, respectively. Furthermore, a comparison between these two types of reliability is presented. The results indicate that the natural gas pipeline network may not be able to meet the market demand even if the system completes the required gas supply tasks due to the impact of the market demand uncertainty.


Author(s):  
Weichao Yu ◽  
Kai Wen ◽  
Yichen Li ◽  
Weihe Huang ◽  
Jing Gong

Natural gas pipeline network system is a critical infrastructure connecting gas resource and market, which is composed with the transmission pipeline system, underground gas storage (UGS) and liquefied natural gas (LNG) terminal demand. A methodology to assess the gas supply capacity and gas supply reliability of a natural gas pipeline network system is developed in this paper. Due to random failure and maintenance action of the components in the pipeline network system, the system can be in a number of operating states. The methodology is able to simulate the state transition process and the duration of each operating state based on a Monte Carlo approach. After the system transits to other states, the actual flow rate will change accordingly. The hydraulic analysis, which includes thermal-hydraulic simulation and maximum flow algorithm, is applied to analyze the change law of the actual flow rate. By combining the hydraulic analysis into the simulation of the state transition process, gas supply capacity of the pipeline network system is quantified. Furthermore, considering the uncertainty of market demand, the load duration curve (LDC) method is employed to predict the amount of demand for each consumer node. The gas supply reliability is then calculated by comparing the gas supply capacity with market demand. Finally, a detailed procedure for gas supply capacity and gas supply reliability assessment of a natural gas pipeline network system is presented, and its feasibility is confirmed with a case study. In the case study, the impact of market demand uncertainty on gas supply reliability is investigated in detail.


Sign in / Sign up

Export Citation Format

Share Document