user classification
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 46)

H-INDEX

7
(FIVE YEARS 3)

2022 ◽  
Vol 93 ◽  
pp. 229-233
Author(s):  
Hans Peter Bögl ◽  
Georg Zdolsek ◽  
Lukas Barnisin ◽  
Michael Möller ◽  
Jörg Schilcher

Background and purpose — To continuously assess the incidence of atypical femoral fractures (AFFs) in the population is important, to allow the evaluation of the risks and benefits associated with osteoporosis treatment. Therefore, we investigated the possibility to use the Swedish Fracture Register (SFR) as a surveillance tool for AFFs in the population and to explore means of improvement. Patients and methods — All AFF registrations in the SFR from January 1, 2015 to December 31, 2018 were enrolled in the study. For these patients, radiographs were obtained and combined with radiographs from 176 patients with normal femoral fractures, to form the study cohort. All images were reviewed and classified into AFFs or normal femur fractures by 2 experts in the field (gold-standard classification) and 1 orthopedic resident educated on the specific radiographic features of AFF (educated-user classification). Furthermore, we estimated the incidence rate of AFFs in the population captured by the register through comparison with a previous cohort and calculated the positive predictive value (PPV) and, where possible, the inter-observer agreement (Cohen’s kappa) between the different classifications. Results — Of the 178 available patients with AFF in the SFR, 104 patients were classified as AFF using the goldstandard classification, and 89 using the educated-user classification. The PPV increased from 0.58 in the SFR classification to 0.93 in the educated-user classification. The interobserver agreement between the gold-standard classification and the educated-user classification was 0.81. Interpretation — With a positive predictive value of 0.58 the Swedish Fracture Register outperforms radiology reports and reports to the Swedish Medical Products Agency on adverse drug reactions as a diagnostic tool to identify atypical femoral fractures.


2021 ◽  
Vol 5 (4) ◽  
pp. 54
Author(s):  
Usman Alhaji Abdurrahman ◽  
Shih-Ching Yeh ◽  
Yunying Wong ◽  
Liang Wei

Understanding the ways different people perceive and apply acquired knowledge, especially when driving, is an important area of study. This study introduced a novel virtual reality (VR)-based driving system to determine the effects of neuro-cognitive load on learning transfer. In the experiment, easy and difficult routes were introduced to the participants, and the VR system is capable of recording eye-gaze, pupil dilation, heart rate, as well as driving performance data. So, the main purpose here is to apply multimodal data fusion, several machine learning algorithms, and strategic analytic methods to measure neurocognitive load for user classification. A total of ninety-eight (98) university students participated in the experiment, in which forty-nine (49) were male participants and forty-nine (49) were female participants. The results showed that data fusion methods achieved higher accuracy compared to other classification methods. These findings highlight the importance of physiological monitoring to measure mental workload during the process of learning transfer.


10.2196/19824 ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. e19824
Author(s):  
Akkapon Wongkoblap ◽  
Miguel A Vadillo ◽  
Vasa Curcin

Background Mental health problems are widely recognized as a major public health challenge worldwide. This concern highlights the need to develop effective tools for detecting mental health disorders in the population. Social networks are a promising source of data wherein patients publish rich personal information that can be mined to extract valuable psychological cues; however, these data come with their own set of challenges, such as the need to disambiguate between statements about oneself and third parties. Traditionally, natural language processing techniques for social media have looked at text classifiers and user classification models separately, hence presenting a challenge for researchers who want to combine text sentiment and user sentiment analysis. Objective The objective of this study is to develop a predictive model that can detect users with depression from Twitter posts and instantly identify textual content associated with mental health topics. The model can also address the problem of anaphoric resolution and highlight anaphoric interpretations. Methods We retrieved the data set from Twitter by using a regular expression or stream of real-time tweets comprising 3682 users, of which 1983 self-declared their depression and 1699 declared no depression. Two multiple instance learning models were developed—one with and one without an anaphoric resolution encoder—to identify users with depression and highlight posts related to the mental health of the author. Several previously published models were applied to our data set, and their performance was compared with that of our models. Results The maximum accuracy, F1 score, and area under the curve of our anaphoric resolution model were 92%, 92%, and 90%, respectively. The model outperformed alternative predictive models, which ranged from classical machine learning models to deep learning models. Conclusions Our model with anaphoric resolution shows promising results when compared with other predictive models and provides valuable insights into textual content that is relevant to the mental health of the tweeter.


2021 ◽  
Vol 2 (68) ◽  
pp. 41-43
Author(s):  
V. Obrubova ◽  
M. Ozerova

The problem of data imbalance is often underestimated when solving classification problems. A classification model that looks well trained on your data and gives a good recognition rate may not be reliable. Consideration of this problem in the specific task of classifying users of social networks will make it possible to understand how, why and, most importantly, when it is necessary to get rid from data imbalances.


2021 ◽  
Vol 2 (68) ◽  
pp. 48-50
Author(s):  
V. Obrubova ◽  
M. Ozerova

The article deals with a complex formulation of the topic social networks users classification to determine professional orientation.


2021 ◽  
Vol 13 (13) ◽  
pp. 7018
Author(s):  
Han Su ◽  
Qian Zhang ◽  
Wanying Wang ◽  
Xiaoan Tang

Determining the distribution fitting of traditional private vehicle user driving behavior is an effective way to understand the differences between different users and provides valuable information on user travel demands. The classification of users is significant to product improvement, precision marketing, and driving recommendations. This study proposed a method which includes four aspects: (1) data collection; (2) data preprocessing; (3) data analysis—a two-stage hybrid user classification, and (4) distribution fitting method. A two-stage hybrid user classification method is used to cluster traditional vehicle users. First, the first-stage classification of the classification method extracts the daily typical time–mileage-series travel patterns (TMTP) to obtain user driving time characteristics. This first-stage classification also extracts the mean and standard deviation of the daily vehicle mileage traveled (DVMT) to express user driving demands. Next, users are divided by K-means based on the driving time characteristics and driving demands from the first stage. Finally, a three-parameter log-normal distribution is used to fit the DVMT of different user types. Comparison with traditional clustering based on the mean and standard deviation and the proportion of each vehicle’s time series in the TMTP types, this study reveals that the new methods provide significant advantages in analyzing driving behavior and high reference value for enterprises making electric vehicle driving range recommendations, car market segmentation, and policy making decisions.


Information ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 248
Author(s):  
Simone Leonardi ◽  
Giuseppe Rizzo ◽  
Maurizio Morisio

In social media, users are spreading misinformation easily and without fact checking. In principle, they do not have a malicious intent, but their sharing leads to a socially dangerous diffusion mechanism. The motivations behind this behavior have been linked to a wide variety of social and personal outcomes, but these users are not easily identified. The existing solutions show how the analysis of linguistic signals in social media posts combined with the exploration of network topologies are effective in this field. These applications have some limitations such as focusing solely on the fake news shared and not understanding the typology of the user spreading them. In this paper, we propose a computational approach to extract features from the social media posts of these users to recognize who is a fake news spreader for a given topic. Thanks to the CoAID dataset, we start the analysis with 300 K users engaged on an online micro-blogging platform; then, we enriched the dataset by extending it to a collection of more than 1 M share actions and their associated posts on the platform. The proposed approach processes a batch of Twitter posts authored by users of the CoAID dataset and turns them into a high-dimensional matrix of features, which are then exploited by a deep neural network architecture based on transformers to perform user classification. We prove the effectiveness of our work by comparing the precision, recall, and f1 score of our model with different configurations and with a baseline classifier. We obtained an f1 score of 0.8076, obtaining an improvement from the state-of-the-art by 4%.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jun Wu ◽  
Li Shi ◽  
Liping Yang ◽  
XiaxiaNiu ◽  
Yuanyuan Li ◽  
...  

In recent years, with the development of machine learning and big data technology, user data has become an important element in the production process of enterprises. For today’s e-commerce platforms, the deep mining of user’s purchase behavior is helpful to understand user’s purchase preferences and accurately recommend products that meet user expectations, which can not only improve user satisfaction but also reduce platform marketing cost. To accurately identify the user value of online purchasing on an e-commerce platform, this paper uses an improved RFM model to extract user features and uses the K -means++ clustering algorithm to realize user classification. The indicators of the traditional RFM model characterize user features from three angles: recent purchase time ( R ), purchase frequency ( F ), and total consumption amount ( M ). The user group and scenarios studied in this paper are different from the previous literature: (1) the user group is relatively fixed, (2) the consumer goods are relatively single, and (3) the characteristics of repeated purchase are obvious. Therefore, based on the existing literature, this paper extracts the user characteristics studied and improves and models the traditional indicators. Based on the real purchasing data from September to December 2018, it calculates the indicators that improved RFM, empowers the weight to indicators, and finally classifies the value of users by using the K -means++ algorithm. The experimental results show that the user classification based on the improved RFM model is more accurate than the user classification based on the traditional RFM model, and the improved RFM model can identify the user value more accurately, which provides a strong support for the e-commerce platform to realize the accurate marketing strategy based on big data.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 835
Author(s):  
Ioannis Tsimperidis ◽  
Cagatay Yucel ◽  
Vasilios Katos

Keystroke dynamics are used to authenticate users, to reveal some of their inherent or acquired characteristics and to assess their mental and physical states. The most common features utilized are the time intervals that the keys remain pressed and the time intervals that are required to use two consecutive keys. This paper examines which of these features are the most important and how utilization of these features can lead to better classification results. To achieve this, an existing dataset consisting of 387 logfiles is used, five classifiers are exploited and users are classified by gender and age. The results, while demonstrating the application of these two characteristics jointly on classifiers with high accuracy, answer the question of which keystroke dynamics features are more appropriate for classification with common classifiers.


Sign in / Sign up

Export Citation Format

Share Document