scholarly journals Extreme Value Estimation of Mooring Loads Based on Station-Keeping Trials in Ice

2021 ◽  
Author(s):  
CHANA SINSABVARODOM ◽  
Bernt Leira ◽  
Wei Chai ◽  
Arvid Naess
Author(s):  
Chana Sinsabvarodom ◽  
Bernt J. Leira ◽  
Wei Chai ◽  
Arvid Naess

Abstract The purpose of this work is to perform an extreme value estimation of the mooring loads associated with station-keeping of a ship operating in ice. In general, the design of mooring lines is based on estimation of the extreme loading caused by environmental conditions within the relevant area. In March 2017, station-keeping trials (SKT) in drifting ice were performed as part of a project headed by Statoil in the Bay of Bothnia. The objective was to investigate the characteristics of the mooring loads for the supply vessel Magne Viking for different types of physical ice management schemes. Tor Viking was employed as an ice breaker as part of the physical ice management systems. The ice conditions (i.e. the ice drift velocity and the ice thickness) during the trials were monitored by using Ice Profiling Sensors (IPSs). Different patterns of ice-breaking manoeuvers were investigated as part of the physical ice management systems, such as square updrift, round circle, circle updrift and linear updrift pattern were studied as part of the field experiments. The peak values of the mooring loads for the supply vessel are determined by using the min peak prominence method. For the purpose of extreme value prediction, the peak over threshold method and block maxima method for a specific time window are applied to estimate the mooring loads that correspond to specific probabilities of exceedance (or equivalently: return periods). These loads can then be compared to the design loads that are being specified by relevant international standards.


2014 ◽  
Vol 140 (9) ◽  
pp. 04014061 ◽  
Author(s):  
M. F. Huang ◽  
Wenjuan Lou ◽  
Xiaotao Pan ◽  
C. M. Chan ◽  
Q. S. Li

Author(s):  
Ryota Wada ◽  
Takuji Waseda

Extreme value estimation of significant wave height is essential for designing robust and economically efficient ocean structures. But in most cases, the duration of observational wave data is not efficient to make a precise estimation of the extreme value for the desired period. When we focus on hurricane dominated oceans, the situation gets worse. The uncertainty of the extreme value estimation is the main topic of this paper. We use Likelihood-Weighted Method (LWM), a method that can quantify the uncertainty of extreme value estimation in terms of aleatory and epistemic uncertainty. We considered the extreme values of hurricane-dominated regions such as Japan and Gulf of Mexico. Though observational data is available for more than 30 years in Gulf of Mexico, the epistemic uncertainty for 100-year return period value is notably large. Extreme value estimation from 10-year duration of observational data, which is a typical case in Japan, gave a Coefficient of Variance of 43%. This may have impact on the design rules of ocean structures. Also, the consideration of epistemic uncertainty gives rational explanation for the past extreme events, which were considered as abnormal. Expected Extreme Value distribution (EEV), which is the posterior predictive distribution, defined better extreme values considering the epistemic uncertainty.


Author(s):  
D. Gary Harlow

Abstract Uncertainty in the prediction of lower tail fatigue life behavior is a combination of many causes, some of which are aleatoric and some of which are systemic. The error cannot be entirely eliminated or quantified due to microstructural variability, manufacturing processing, approximate scientific modeling, and experimental inconsistencies. The effect of uncertainty is exacerbated for extreme value estimation for fatigue life distributions because by necessity those events are rare. In addition, typically, there is a sparsity of data in the region of smaller stress levels in stress–life testing where the lives are considerably longer, extending to giga cycles for some applications. Furthermore, there is often over an order of magnitude difference in the fatigue lives in that region of the stress–life graph. Consequently, extreme value estimation is problematic using traditional analyses. Thus, uncertainty must be statistically characterized and appropriately managed. The primary purpose of this paper is to propose an empirically based methodology for estimating the lower tail behavior of fatigue life cumulative distribution functions, given the applied stress. The methodology incorporates available fatigue life data using a statistical transformation to estimate lower tail behavior at much smaller probabilities than can be estimated by traditional approaches. To assess the validity of the proposed methodology confidence bounds will be estimated for the stress–life data. The development of the methodology and its subsequent validation will be illustrated using extensive fatigue life data for 2024–T4 aluminum alloy specimens readily available in the open literature.


Sign in / Sign up

Export Citation Format

Share Document