Volume 1: Codes and Standards
Latest Publications


TOTAL DOCUMENTS

106
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791858929

Author(s):  
Chris San Marchi ◽  
Joseph Ronevich ◽  
Paolo Bortot ◽  
Yoru Wada ◽  
John Felbaum ◽  
...  

Abstract The design of pressure vessels for high-pressure gaseous hydrogen service per ASME Boiler and Pressure Vessel Code Section VIII Division 3 requires measurement of fatigue crack growth rates in situ in gaseous hydrogen at the design pressure. These measurements are challenging and only a few laboratories in the world are equipped to make these measurements, especially in gaseous hydrogen at pressure in excess of 100 MPa. However, sufficient data is now available to show that common pressure vessel steels (e.g., SA-372 and SA-723) show similar fatigue crack growth rates when the maximum applied stress intensity factor is significantly less than the elastic-plastic fracture toughness. Indeed, the measured rates are sufficiently consistent that a master curve for fatigue crack growth in gaseous hydrogen can be established for steels with tensile strength less than 915 MPa. In this overview, published reports of fatigue crack growth rate data in gaseous hydrogen are reviewed. These data are used to formulate a two-part master curve for fatigue crack growth in high-pressure (106 MPa) gaseous hydrogen, following the classic power-law formulation for fatigue crack growth and a term that accounts for the loading ratio (R). The bounds on applicability of the master curve are discussed, including the relationship between hydrogen-assisted fracture and tensile strength of these steels. These data have been used in developing ASME VIII-3 Code Case 2938. Additionally, a phenomenological term for pressure can be added to the master curve and it is shown that the same master curve formulation captures the behavior of pressure vessel and pipeline steels at significantly lower pressure.


Author(s):  
Kenneth Kirkpatrick ◽  
Christopher R. Johnson ◽  
J. Adin Mann

Abstract ASME Boiler and Pressure Vessel Code (BPVC), Section VIII, Division 2, Part 5 Method B fatigue screening is intended to be a quick and simple method that is sufficiently conservative to screen components in cyclic service thus not requiring detailed fatigue analysis. The method assesses pressure, thermal, and mechanical loads separately. The basis for each portion of the method is discussed along with an alternative bases for the assessments. Each assessment is reformulated as a fatigue damage factor and all variables are provided so that the intent of each equation is clearly identifiable. A penalty factor will be included in each equation rather than assuming one penalty for all designs, the reformulation creates penalty for non-fatigue resistant designs and reduces the penalty for fatigue resistant designs. Examples are given showing the potentially non-conservative results if a summed damage is not used.


Author(s):  
Masanori Ando ◽  
Satoshi Okajima ◽  
Kazumichi Imo

Abstract For the required thickness estimation against buckling in the elevated temperature design, the external pressure chart for two kinds of ferritic steel, 2 1/4Cr-1Mo and Mod.9Cr-1Mo steel, was developed. On the basis of the guideline described in the ASME BPVC Section II, Part D, Mandatory Appendix 3 with mechanical and physical properties provided in the JSME fast reactor code, the external pressure charts for each material were constructed. The minimum stress-strain curve for evaluating the external pressure chart was applied the stress-strain equation with design yield strength, Sy, provided by the JSME fast reactor code. As a result, three external pressure charts with digital values were proposed for elevated temperature design. Moreover, the rationalization effect from the current alternative was evaluated by the sample problem. This proposal resolves two issues. One is alternative use of chart for lower strength material over the 150 °C. The other is the external pressure chart above 480°C for which ferritic steels are not available.


Author(s):  
Xin Song ◽  
Zelin Han ◽  
Bin Liu ◽  
Mu Qin ◽  
Yuancai Duo ◽  
...  

Abstract The heat affected zone (HAZ) of 2.25Cr-1Mo-0.25V welded joint is a critical part for the safety of hydrogenation reactors. Hydrogen has a significant effect on the HAZ, studying hydrogen diffusion characteristics, such as: hydrogen flux and the effective hydrogen diffusivity has a remarkable value in investigating the hydrogen-induced material degradation mechanisms. In this work, an electrochemical permeation method was applied to study the hydrogen diffusion characteristics of HAZ. Then, the metallographic microscope and a software “Image J” were used to analyze the density of grain boundaries of HAZ. The effect of the post–weld heat treatment (PWHT, i.e. annealing) on the hydrogen diffusion characteristics of HAZ was also been investigated. The results show that after PWHT, the effective hydrogen diffusivity of HAZ increases from 1.63 × 10−7cm2·s−1 to 3.68 × 10−7cm2·s−1, the hydrogen concentration decreases from 1.92 × 10−4mol·cm−3 to 1.09 × 10−4mol·cm−3, and the hydrogen trap density decreases from 3.00 × 1026m−3 to 0.76 × 1026m−3. Thus, PWHT can significantly reduce density of grain boundaries, thereby reducing the hydrogen trap density, enhancing the hydrogen diffusivity and reducing the hydrogen concentration.


Author(s):  
Zhiwei Chen ◽  
Tao Li ◽  
Guoyi Yang ◽  
Jinyang Zheng ◽  
Guide Deng

Abstract GB/T 34019-2017 “Ultra High Pressure Vessels” is the most important national standard that applies to pressure vessel which design pressure value is greater than or equal to 100MPa (14.5ksi). There is no standard for Ultra-high Pressure Vessel, Then this standard fills the gap in the standard system of pressure equipment in China. This paper mainly introduces the concept and main content of the new national standard, including the materials, design methods and nondestructive testing of ultra-high pressure vessel.


Author(s):  
Kiminobu Hojo

Abstract Fitness for service rules and a calculation method for ductile crack growth under large scale plastic cyclic loading have not been established even for Mode I. In a paper presented at the PVP2018 conference the authors presented methods to establish how to determine the parameters of the combined hardening plasticity rule and applied it to simulate the ductile crack growth behavior of 1TCT specimens of the different load levels. Also, ΔJ calculations using the reference stress method, and a ΔJ-basis fatigue crack growth rate derived from that on ΔK-basis according to JSME rules for FFS were applied to estimate the crack growth under cyclic loading in excess of yield. Since in the 2018 paper identified some gaps were found between experiments and the predicted crack growth behavior, several equations of the reference stress method are evaluated in the present paper. Additionally, the prediction procedure using the ΔJ calculation by the reference stress method and the da/dN−ΔJ curve based on the JSME rules for FFS are applied to pipe fracture tests under cyclic loading. Their applicability is discussed for the case of an example piping system.


Author(s):  
Bipul Barua ◽  
Subhasish Mohanty ◽  
Saurindranath Majumdar ◽  
Krishnamurti Natesan

Abstract Current approaches of fatigue evaluation of nuclear reactor components or other safety critical structural systems use S∼N curve based empirical relations which may have large uncertainty. This uncertainty may be reduced by using a more mechanistic approach. In the proposed mechanistic approach, material models are developed based on the evolution of material behavior under uniaxial fatigue experiments and implement those models into 3D finite element (FE) calculations for fatigue evaluation under multiaxial loading. However, this approach requires simulating structures under thousands of fatigue cycles which necessitates the use of high performance computing (HPC) to determine fatigue life of a large component/system within reasonable time frame. Speeding up the FE simulation of large systems requires the use of a higher number of cores, which is extremely costly, particularly when a commercial FE code is used. Also, commercial software is not necessarily optimized for use in an HPC environment. In this work, an open source parallel computing solver along with a multi-core cluster is used to scale up the number of cores. The HPC-based mechanistic fatigue modeling framework is validated through evaluating fatigue life of a pressurized water reactor surge line pipe under idealistic loading cycles and comparing the simulation results with observations from uniaxial fatigue experiment of 316 stainless steel specimen.


Author(s):  
Kiminobu Hojo

Abstract This paper summarizes the revised flaw evaluation procedures for cast austenitic stainless steel (CASS) pipe of the Japan Society of Mechanical Engineers (JSME) rules on fitness for service (FFS) in 2018 addenda. The revision includes the introduction of thermal aging degradation models for stressstrain curve and fracture resistance (J-R) curve, application of a screening criteria for the fracture evaluation procedure of cast stainless steel pipes, and introduction of a new critical stress parameter for the limit load evaluation method of a shallow flaw with a flaw depth to thickness ratio of less than or equal to 0.5. These revisions are based on a large database of specimen tests and several fracture tests of flat plate and large pipe models using thermally aged material, which have already been published.


Author(s):  
Christian Swacek ◽  
Patrick Gauder ◽  
Michael Seidenfuss

Abstract In 2012 non-destructive testing measurements (NDT) of the reactor pressure vessels (RPV) in the Belgian Nuclear Power Plants Doel 3 and Tihange 2 revealed a high quantity of indications in the upper and lower core shells. The most likely explanation is that the measured indications are hydrogen flakes positioned in segregated zones in the base material of the pressure vessels. These hydrogen flakes have a laminar and quasi-laminar orientation with an inclination up to 15° to the pressure retaining surface. Under internal pressure, the crack tips undergo predominantly mixed mode loading conditions, where the induced stress and strain fields of the single crack tips influence each other. The safety assessment of crack afflicted pressurized components is performed by fracture mechanical approaches. For the evaluation of multiple cracks in crack fields, state of the art codes and standards apply interaction criteria and grouping methods, to determine a representative crack, which has to be evaluated. In this paper, the interaction of cracks in crack fields is numerically and experimentally evaluated. Damage mechanical models based on the Rousselier- and the Beremin model are used to investigate numerically the interaction of cracks in crack fields. Experimental data from ferritic flat tensile specimens afflicted with cracks are used to verify the numerical results. The damage mechanical calculations reveal critical crack arrangements due to coalescence behavior and cleavage fracture probability. These results and ongoing research intends the derivation of interaction criteria for cracks in crack fields. The interaction criteria will be used for the definition of a representative flaw for a conservative integrity assessment of crack afflicted components.


Author(s):  
Jürgen Rudolph ◽  
Guy Baylac ◽  
Ralf Trieglaff ◽  
Rüdiger Gawlick ◽  
Michael Krämer ◽  
...  

Abstract The European Pressure Vessel Standard EN 13445 (harmonized Standard acc. to PED 2014/68/EU) provides in its Part 3 (Design) a simplified method for fatigue assessment (Clause 17) and a detailed method of fatigue assessment (Clause 18). While the new revision of Clause 17 has already been adopted, Clause 18 “Detailed Assessment of Fatigue Life” is now available as a consolidated revision in inquiry phase. This major and comprehensive revision has been developed within the framework of the European working group CEN/TC 54/WG 53 – Design methods and constitutes a crucial step towards a modern and user-friendly engineering fatigue assessment method. The overall structure and amendments of Clause 18 are to be presented. All these amendments aim at a significant increase in user friendliness and clear guidelines for application. The following items are to be mentioned in that context: • Fatigue assessment of welded components based on structural stress and structural hot-spot stress approaches, • Detailed guidelines for determining relevant stresses and stress ranges, • Cycle counting proposals in the context of the fatigue assessment method including a critical plane approach. The fatigue assessment of welded components is separated from the fatigue assessment of un-welded parts as it has already been done in previous versions with respective methodological differences. Stress analyses for clause 18 are usually based on detailed finite element analyses (FEA). As an essential amendment for the user, the determination of structural stress ranges for the fatigue assessment of welds is further detailed in a new appropriate annex. Different applicable methods for the determination of structural stresses are explained in connection with the requirements of the finite element models and analyses. The cycle counting issue is comprehensively treated in the context of different design and operation situations (design transients, operational stress-time-histories). The description is detailed towards a critical plane approach. Detailed proposals for implementation in an algorithmic programming framework are given making the described methods ready to use.


Sign in / Sign up

Export Citation Format

Share Document