scholarly journals Aeromechanical Analysis of a Complete Wind Turbine Using Nonlinear Frequency Domain Solution Method

2021 ◽  
Author(s):  
Shine Win Naung ◽  
Mohammad Rahmati ◽  
Hamed Farokhi
2020 ◽  
Author(s):  
Shine Win Naung ◽  
Mohammad Rahmati ◽  
Hamed Farokhi

Abstract The high-fidelity computational fluid dynamics (CFD) simulations of a complete wind turbine model usually require significant computational resources. It will require much more resources if the fluid-structure interactions between the blade and the flow are considered, and it has been the major challenge in the industry. The aeromechanical analysis of a complete wind turbine model using a high-fidelity CFD method is discussed in this paper. The distinctiveness of this paper is the application of the nonlinear frequency domain solution method to analyse the forced response and flutter instability of the blade as well as to investigate the unsteady flow field across the wind turbine rotor and the tower. This method also enables the aeromechanical simulations of wind turbines for various inter blade phase angles in a combination with a phase shift solution method. Extensive validations of the nonlinear frequency domain solution method against the conventional time domain solution method reveal that the proposed frequency domain solution method can reduce the computational cost by one to two orders of magnitude.


2021 ◽  
Vol 143 (1) ◽  
Author(s):  
Shine Win Naung ◽  
Mohammad Rahmati ◽  
Hamed Farokhi

Abstract The high-fidelity computational fluid dynamics (CFD) simulations of a complete wind turbine model usually require significant computational resources. It will require much more resources if the fluid–structure interactions (FSIs) between the blade and the flow are considered, and it has been the major challenge in the industry. The aeromechanical analysis of a complete wind turbine model using a high-fidelity CFD method is discussed in this paper. The distinctiveness of this paper is the application of the nonlinear frequency domain solution method to analyze the forced response and flutter instability of the blade as well as to investigate the unsteady flow field across the wind turbine rotor and the tower. This method also enables the aeromechanical simulations of wind turbines for various interblade phase angles in a combination with a phase shift solution method. Extensive validations of the nonlinear frequency domain solution method against the conventional time domain solution method reveal that the proposed frequency domain solution method can reduce the computational cost by one to two orders of magnitude.


Author(s):  
Laura Junge ◽  
Graham Ashcroft ◽  
Peter Jeschke ◽  
Christian Frey

Due to the relative motion between adjacent blade rows the aerodynamic flow fields within turbomachinery are normally dominated by deterministic, periodic phenomena. In the numerical simulation of such unsteady flows (nonlinear) frequency-domain methods are therefore attractive as they are capable of fully exploiting the given spatial and temporal periodicity, as well as capturing or modelling flow nonlinearity. Central to the efficiency and accuracy of such frequency-domain methods is the selection of the frequencies and the circumferential modes to be resolved in simulations. Whilst trivial in the context of the simulation of a single compressor- or turbine-stage, the choice of solution modes becomes substantially more involved in multi-stage configurations. In this work the importance of mode scattering, in the context of the unsteady aerodynamic field, is investigated and quantified. It is shown that scattered modes can substantially impact the unsteady flow field and are essential for the accurate modelling of wake propagation within multistage configurations. Furthermore, an iterative approach is outlined, based on the spectral analysis of the circumferential modes at the interfaces between blade rows, to identify the dominant solution modes that should be resolved in the adjacent blade row. To demonstrate the importance of mode scattering and validate the approach for their identification the unsteady blade row interaction within a 4.5 stage axial compressor is computed using both the harmonic balance method and, based on a full annulus midspan simulation, a time-domain method. Through the inclusion of scattered modes it is shown that the solution quality of the harmonic balance results is comparable to that of the nonlinear time-domain simulation.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3092 ◽  
Author(s):  
Giulio Ferri ◽  
Enzo Marino ◽  
Claudio Borri

In this paper, an optimal semisubmersible platform is sought considering two key geometry variables: the diameter of the outer cylinders and their radial distance from the platform centre. The goal is to identify a platform configuration able to most efficiently contrast the combined wind-wave action, keeping the platform dimensions as small as possible. The amplitude of the Response Amplitude Operator (RAO) peaks and the integral area of the RAOs in a range of excited frequencies for the selected degrees of freedom are chosen as targets to be minimised. Through an efficient frequency domain simulation approach, we show that upscaling techniques proposed in the literature may lead to overdesigned platforms and that smaller and more performing platforms can be identified. In particular, the optimised platform shows a reduction of about 51% in parked and 54% in power production of the heave RAO peak, and a reduction of about 37% in parked and 50% in power production of the pitch RAO.


Sign in / Sign up

Export Citation Format

Share Document