scholarly journals Aeromechanical Analysis of a Complete Wind Turbine Using Nonlinear Frequency Domain Solution Method

2021 ◽  
Vol 143 (1) ◽  
Author(s):  
Shine Win Naung ◽  
Mohammad Rahmati ◽  
Hamed Farokhi

Abstract The high-fidelity computational fluid dynamics (CFD) simulations of a complete wind turbine model usually require significant computational resources. It will require much more resources if the fluid–structure interactions (FSIs) between the blade and the flow are considered, and it has been the major challenge in the industry. The aeromechanical analysis of a complete wind turbine model using a high-fidelity CFD method is discussed in this paper. The distinctiveness of this paper is the application of the nonlinear frequency domain solution method to analyze the forced response and flutter instability of the blade as well as to investigate the unsteady flow field across the wind turbine rotor and the tower. This method also enables the aeromechanical simulations of wind turbines for various interblade phase angles in a combination with a phase shift solution method. Extensive validations of the nonlinear frequency domain solution method against the conventional time domain solution method reveal that the proposed frequency domain solution method can reduce the computational cost by one to two orders of magnitude.

2020 ◽  
Author(s):  
Shine Win Naung ◽  
Mohammad Rahmati ◽  
Hamed Farokhi

Abstract The high-fidelity computational fluid dynamics (CFD) simulations of a complete wind turbine model usually require significant computational resources. It will require much more resources if the fluid-structure interactions between the blade and the flow are considered, and it has been the major challenge in the industry. The aeromechanical analysis of a complete wind turbine model using a high-fidelity CFD method is discussed in this paper. The distinctiveness of this paper is the application of the nonlinear frequency domain solution method to analyse the forced response and flutter instability of the blade as well as to investigate the unsteady flow field across the wind turbine rotor and the tower. This method also enables the aeromechanical simulations of wind turbines for various inter blade phase angles in a combination with a phase shift solution method. Extensive validations of the nonlinear frequency domain solution method against the conventional time domain solution method reveal that the proposed frequency domain solution method can reduce the computational cost by one to two orders of magnitude.


2018 ◽  
Vol 32 (12n13) ◽  
pp. 1840053 ◽  
Author(s):  
Jiufa Cao ◽  
Weijun Zhu ◽  
Tongguang Wang ◽  
Shitang Ke

The current work describes a novel technique for wind turbine rotor optimization. The aerodynamic design and optimization of wind turbine rotor can be achieved with different methods, such as the semi-empirical engineering methods and more accurate computational fluid dynamic (CFD) method. The CFD method often provides more detailed aerodynamics features during the design process. However, high computational cost limits the application, especially for rotor optimization purpose. In this paper, a CFD-based actuator disc (AD) model is used to represent turbulent flow over a wind turbine rotor. The rotor is modeled as a permeable disc of equivalent area where the forces from the blades are distributed on the circular disc. The AD model is coupled with a Reynolds Averaged Navier–Stokes (RANS) solver such that the thrust and power are simulated. The design variables are the shape parameters comprising the chord, the twist and the relative thickness of the wind turbine rotor blade. The comparative aerodynamic performance is analyzed between the original and optimized reference wind turbine rotor. The results showed that the optimization framework can be effectively and accurately utilized in enhancing the aerodynamic performance of the wind turbine rotor.


Author(s):  
Scott Dana ◽  
Joseph Yutzy ◽  
Douglas E. Adams

One of the primary challenges in diagnostic health monitoring and control of wind turbines is compensating for the variable nature of wind loads. Given the sometimes large variations in wind speed, direction, and other operational variables (like wind shear), this paper proposes a data-driven, online rotor model identification approach. A 2 m diameter horizontal axis wind turbine rotor is first tested using experimental modal analysis techniques. Through the use of the Complex Mode Indication Function, the dominant natural frequencies and mode shapes of dynamic response of the rotor are estimated (including repeated and pseudo-repeated roots). The free dynamic response properties of the stationary rotor are compared to the forced response of the operational rotor while it is being subjected to wind and rotordynamic loads. It is demonstrated that both narrowband (rotordynamic) and broadband (wind driven) responses are amplified near resonant frequencies of the rotor. Blade loads in the flap direction of the rotor are also estimated through matrix inversion for a simulated set of rotor blade input forces and for the operational loading state of the wind turbine in a steady state condition. The analytical estimates are shown to be accurate at frequencies for which the ordinary coherence functions are near unity. The loads in operation are shown to be largest at points mid-way along the span of the blade and on one of the three blades suggesting this method could be used for usage monitoring. Based on these results, it is proposed that a measurement of upstream wind velocity will provide enhanced models for diagnostics and control by providing a leading indicator of disturbances in the loads.


2017 ◽  
Vol 14 ◽  
pp. 01016
Author(s):  
Stanisław Gumuła ◽  
Małgorzata Piaskowska–Silarska ◽  
Krzysztof Pytel ◽  
Henryk Noga ◽  
Wojciech Kulinowski

Author(s):  
Sohail R. Reddy ◽  
George S. Dulikravich ◽  
Helmut Sobieczky

The work presented in this paper used rigorous 3D flow-field analysis combined with multi-objective constrained shape design optimization for the design of bladelet (winglet) configurations for a three-blade propeller type wind turbine. The fluid flow analysis in this work was performed using 3D, steady, incompressible, turbulent flow Reynolds-averaged Navier-Stokes equations in the rotating frame of reference for each combination of a given wind turbine blade and a varying bladelet geometry. The free stream uniform wind speed in all cases was assumed to be 9 m s−1 and rotational speed was 12 rpm. These were off-design conditions for this rotor. The three simultaneous design optimization objectives were: a) maximize the coefficient of power, b) minimize the coefficient of thrust, and c) minimize twisting moment around the blade axis. The bladelet geometry was fully defined by using a small number of parameters. The optimization was carried out by creating a multi-dimensional response surface for each of the simultaneous objectives. The response surfaces were based on radial basis functions, where the support points were designs analyzed using the high fidelity CFD analysis of the full blade + bladelet geometry. The response surfaces were then coupled to a multi-objective optimization algorithm. The predicted values of the objective functions for the optimum designs were then again validated using the high fidelity computational fluid dynamics analysis code. Results for a Pareto optimized bladelet on a given blade indicate that more than 4% increase in the coefficient of power at minimal thrust force penalty is possible compared to the same wind turbine rotor blade without a bladelet.


Author(s):  
Reza Yaghmaie ◽  
Onur Bilgen

Abstract This paper presents a comparison of low- and high-fidelity structural analyses of a 10 MW offshore floating wind turbine rotor blade. For low-fidelity analysis, BeamDyn as a part of the OpenFAST toolset is used. For high-fidelity analysis, the Toolkit for the Analysis of Composite Structures (TACS) finite element method is used. First, several numerical examples with reference solutions from the literature are investigated to compare the accuracy and efficiency of the low- and high-fidelity structural models. Next, the DTU 10 MW reference wind turbine blade is analyzed using both the low- and high-fidelity methods. The bending response of the blade is analyzed. The results show that the high-fidelity model agrees with low-fidelity results and reference solutions. The high-fidelity model represents the deformations more accurately than the low-fidelity model and therefore is appropriate for structural analysis of complex wind turbine blade shapes.


2022 ◽  
Author(s):  
Denis-Gabriel Caprace ◽  
Adam Cardoza ◽  
Andrew Ning ◽  
Marco Mangano ◽  
Sicheng He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document