scholarly journals First-Passage Failure of Quasi-Integrable Hamiltonian Systems

2002 ◽  
Vol 69 (3) ◽  
pp. 274-282 ◽  
Author(s):  
W. Q. Zhu ◽  
M. L. Deng ◽  
Z. L. Huang

The first-passage failure of quasi-integrable Hamiltonian systems (multidegree-of-freedom integrable Hamiltonian systems subject to light dampings and weakly random excitations) is investigated. The motion equations of such a system are first reduced to a set of averaged Ito^ stochastic differential equations by using the stochastic averaging method for quasi-integrable Hamitonian systems. Then, a backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of first-passage time are established. Finally, the conditional reliability function, and the conditional probability density and moments of first-passage time are obtained by solving these equations with suitable initial and boundary conditions. Two examples are given to illustrate the proposed procedure and the results from digital simulation are obtained to verify the effectiveness of the procedure.

1978 ◽  
Vol 45 (1) ◽  
pp. 175-180 ◽  
Author(s):  
J. B. Roberts

A simple numerical scheme is proposed for computing the probability of first passage failure, P(T), in an interval O-T, for oscillators with nonlinear damping. The method depends on the fact that, when the damping is light, the amplitude envelope, A(t), can be accurately approximated as a one-dimensional Markov process. Hence, estimates of P(T) are found, for both single and double-sided barriers, by solving the Fokker-Planck equation for A(t) with an appropriate absorbing barrier. The numerical solution of the Fokker-Planck equation is greatly simplified by using a discrete time random walk analog of A(t), with appropriate statistical properties. Results obtained by this method are compared with corresponding digital simulation estimates, in typical cases.


2014 ◽  
Vol 81 (8) ◽  
Author(s):  
Mao Lin Deng ◽  
Yue Fu ◽  
Zhi Long Huang

The first-passage problem of quasi-nonintegrable Hamiltonian systems subject to light linear/nonlinear dampings and weak external/parametric random excitations is investigated here. The motivation is to acquire asymptotic analytical solution of the first-passage rate or the mean first-passage time based on the averaged Itô stochastic differential equation for quasi-nonintegrable Hamiltonian systems. By using the probability current equation and the Laplace integral method, a new method is proposed to obtain the asymptotic analytical expressions for the first-passage rate in the case of high passage threshold. The associated functions such as the reliability function and the probability density function of first-passage time can then be obtained from the first-passage rate. High passage threshold is the crucial condition for the validity of the proposed method. The random bistable oscillator is studied as an illustrative example using the method. The analytical result obtained from the asymptotic analysis shows its consistency with the Kramers formula. A coupled two-degree-of-freedom (2DOF) nonlinear oscillator subjected to stochastic excitations is studied to illustrate the procedure of acquiring the asymptotic analytical solution. The results obtained from the analytical solution agree well with those from numerical simulation, which verifies the accuracy of the proposed method.


1991 ◽  
Vol 28 (4) ◽  
pp. 903-909 ◽  
Author(s):  
R. Gutiérrez Jáimez ◽  
A. Juan Gonzalez ◽  
P. Román Román

In Giorno et al. (1988) a new method for constructing first-passage-time probability density functions is outlined. This rests on the possibility of constructing the transition p.d.f. of a new time-homogeneous diffusion process in terms of a preassigned transition p.d.f. without making use of the classical space-time transformations of the Kolmogorov equation (Ricciardi (1976)).In the present paper we give an extension of this result to the case of a diffusion process X(t) which is not necessarily time-homogeneous, and a few examples are presented.


1991 ◽  
Vol 28 (04) ◽  
pp. 903-909 ◽  
Author(s):  
R. Gutiérrez Jáimez ◽  
A. Juan Gonzalez ◽  
P. Román Román

In Giorno et al. (1988) a new method for constructing first-passage-time probability density functions is outlined. This rests on the possibility of constructing the transition p.d.f. of a new time-homogeneous diffusion process in terms of a preassigned transition p.d.f. without making use of the classical space-time transformations of the Kolmogorov equation (Ricciardi (1976)). In the present paper we give an extension of this result to the case of a diffusion process X(t) which is not necessarily time-homogeneous, and a few examples are presented.


1969 ◽  
Vol 6 (01) ◽  
pp. 218-223
Author(s):  
M.T. Wasan

In this paper we assign a set of conditions to a strong Markov process and arrive at a differential equation analogous to the Kolmogorov equation. However, in this case the duration variable is the net distance travelled and the state variable is a time, a situation precisely opposite to that of Brownian motion. Solving this differential equation under certain boundary conditions produces the density function of the first passage times of Brownian motion with positive drift (see [1]), with the aid of which we define a new stochastic process.


2013 ◽  
Vol 302 ◽  
pp. 717-722 ◽  
Author(s):  
Ting Zhang ◽  
Chang Shui Feng ◽  
Qiao Yi Wang

The first passage type reliability of Duffing-van der Pol oscillator with time-delayed feedback control under wide-band noise excitations is studied. First, the time-delayed feedback control force is expressed approximately in terms of the system state variables without time delay. Then, the averaged Itô stochastic differential equations for the system are derived by using the stochastic averaging method, from which a backward Kolmogorov equation governing the conditional reliability function and a Pontryagin equation governing the conditional mean of the first passage time are established. Finally, the conditional reliability function and the conditional mean of first passage time are obtained by solving these equations together with suitable initial condition and boundary conditions. The effect of time delay in feedback control force on the reliability is analyzed. The theoretical results are well verified through digital simulation.


Sign in / Sign up

Export Citation Format

Share Document