control force
Recently Published Documents


TOTAL DOCUMENTS

522
(FIVE YEARS 132)

H-INDEX

26
(FIVE YEARS 4)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 171
Author(s):  
Jiguang Hou ◽  
Xianteng Cao ◽  
Changshu Zhan

Suspension is an important part of intelligent and safe transportation; it is the balance point between the comfort and handling stability of a vehicle under intelligent traffic conditions. In this study, a control method of left-right symmetry of air suspension based on H∞ theory was proposed, which was verified under intelligent traffic conditions. First, the control stability caused by the active suspension control system running on uneven roads needs to be ensured. To address this issue, a 1/4 vehicle active suspension model was established, and the vertical acceleration of the vehicle body was applied as the main index of ride comfort. H∞ performance constraint output indicators of the controller contained the tire dynamic load, suspension dynamic stroke, and actuator control force limit. Based on the Lyapunov stability theory, an output feedback control law with H∞-guaranteed performance was proposed to constrain multiple targets. This way, the control problem was transformed into a solution to the Riccati equation. The simulation results showed that when dealing with general road disturbances, the proposed control strategy can reduce the vehicle body acceleration by about 20% and meet the requirements of an ultimate suspension dynamic deflection of 0.08 m and a dynamic tire load of 1500 N. Using this symmetrical control method can significantly improve the ride comfort and driving stability of a vehicle under intelligent traffic conditions.


2022 ◽  
Vol 14 (4) ◽  
pp. 122-129
Author(s):  
Nadezhda Yudina ◽  
I. Kushcheva ◽  
Tatyana Skvortsova

The paper presents the modeling of the solution to one of the problems of mechanics - the automated control of the manipulator used in the forestry industry for moving operations at various stages of the technological process. A unified model has been developed that allows generating control actions and energy consumption of the object under study. As a result of solving the problem, a system of equations was obtained for determining the control moment and control force, which allow the manipulator to be set in motion, as well as to determine the energy consumption for the implementation of the program motion, in which the load moves at a given speed from point a to point b along a straight line inclined at a given angle to the horizon. The proposed algorithm is generalized for solving computer-aided design problems and is a simulation experiment. The software solution is implemented in two forms. In the first module, the database is filled with the initial metric, angular and physical and mathematical characteristics of the manipulator. In the second, according to the unified model described above, the indicators are calculated that are necessary for the movement of the object and characterize the dynamics of movement, as well as the necessary energy consumption for performing the operations performed. The possibility of converting the calculated values from the database into an MS Excel table is provided.


2021 ◽  
Vol 1 (2) ◽  
pp. 40-48
Author(s):  
Bence Varga ◽  
Hazem Issa ◽  
Richárd Horváth ◽  
József Tar

In the paper a novel approach is suggested for solving the inverse kinematic task of redundant open kinematic chains. Traditional approaches as the Moore-Penrose generalized inverse-based solutions minimize the sum of squares of the timederivative of the joint coordinates under the constraint that contains the task itself. In the vicinity of kinematic singularities where these solutions are possible the hard constraint terms produce high time-derivatives that can be reduced by the use of a deformation proposed by Levenberg and Marquardt. The novel approach uses the basic scheme of the Receding Horizon Controllers in which the Lagrange multipliers are eliminated by direct application of the kinematic model over the horizon in the role of the ”control force”, and no reduced gradient has to be computed. This fact considerably decreases the complexity of the solution. If the cost function contains penalty for high joint coordinate time-derivatives the kinematic singularities are ab ovo better handled. Simulation examples made for a 7 degree of freedom robot arm demonstrate the operation of the novel approach. The computational need of the method is still considerable but it can be further decreased by the application of complementary tricks.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Tingting Liu ◽  
Chuanping Zhou ◽  
Zhigang Yan ◽  
Guojin Chen

The cantilever plate structure in a T-beam bridge with a large aspect ratio will cause vibration under the influence of environmental disturbance and self-stress, resulting in fatigue damage of the plate structure. Wave control based on elastic wave theory is an effective method to suppress the vibration of the cantilever plate structure in a beam bridge. Based on the classical thin plate theory and the wave control method, the active vibration control of the T-shaped cantilever plate with a large aspect ratio in the beam bridge is studied in this paper. The wave mode control strategy of structural vibration is analyzed and studied, the controller is designed, the vibration mode function of the cantilever plate is established, and the control force/sensor feedback wave control is implemented for the structure. The dynamic response of the cantilever plate before and after applying wave control force is analyzed through numerical examples. The results show that the response of the structure is intense before control, but after wave control, the structure increases damping, absorbs the energy carried by the elastic wave in the structure, weakens the sharp response, and changes the natural frequency of the structure to a certain extent.


Author(s):  
Soo-Min Kim ◽  
Moon K Kwak ◽  
Taek Soo Chung ◽  
Ki-Seok Song

This study is concerned with the development of multi-input multi-output control algorithms for the active vibration suppression of structures using accelerometer signals and force-type actuators. The concept of the single-input single-output virtual tuned mass damper control algorithm developed in the previous study was extended to cope with multiple natural modes of structure equipped with a limited number of sensors and actuators. Two control algorithms were developed based on the assumption of collocated control. One is the decentralized virtual tuned mass damper control that produces the actuator signal using only the accelerometer signal of that actuator position. The other is the centralized virtual tuned mass damper control that is designed in modal-space, and produces the modal control force using the modal coordinate. Both the theoretical and experimental results show that the proposed control algorithms are effective in suppressing multiple natural modes with a lesser number of sensors and actuators. However, the decentralized virtual tuned mass damper control can be designed and implemented more easily than the centralized virtual tuned mass damper control.


2021 ◽  
Vol 11 (24) ◽  
pp. 11945
Author(s):  
Khoi Phan Bui ◽  
Hong Nguyen Xuan

In this paper, the problem of controlling a human-like bipedal robot while walking is studied. The control method commonly applied when controlling robots in general and bipedal robots in particular, was based on a dynamical model. This led to the need to accurately define the dynamical model of the robot. The activities of bipedal robots to replace humans, serve humans, or interact with humans are diverse and ever-changing. Accurate determination of the dynamical model of the robot is difficult because it is difficult to fully and accurately determine the dynamical quantities in the differential equations of motion of the robot. Additionally, another difficulty is that because the robot’s operation is always changing, the dynamical quantities also change. There have been a number of works applying fuzzy logic-based controllers and neural networks to control bipedal robots. These methods can overcome to some extent the uncertainties mentioned above. However, it is a challenge to build appropriate rule systems that ensure the control quality as well as the controller’s ability to perform easily and flexibly. In this paper, a method for building a fuzzy rule system suitable for bipedal robot control is proposed. The design of the motion trajectory for the robot according to the human gait and the analysis of dynamical factors affecting the equilibrium condition and the tracking trajectory were performed to provide informational data as well as parameters. Based on that, a fuzzy rule system and fuzzy controller was proposed and built, allowing a determination of the control force/moment without relying on the dynamical model of the robot. For evaluation, an exact controller based on the assumption of an accurate dynamical model, which was a two-feedback loop controller based on integrated inverse dynamics with proportional integral derivative, is also proposed. To confirm the validity of the proposed fuzzy rule system and fuzzy controller, computation and numerical simulation were performed for both types of controllers. Comparison of numerical simulation results showed that the fuzzy rule system and the fuzzy controller worked well. The proposed fuzzy rule system is simple and easy to apply.


2021 ◽  
Vol 155 (A2) ◽  
Author(s):  
M G Zhou ◽  
S J Ma ◽  
Z J Zou

For a ship navigating along a bank in restricted waters, it is usually accompanied by obvious bank effect which may cause ship-bank collision. In order to avoid collision, it is necessary to provide control force and moment by using control devices such as a rudder. In this paper, CFD method is applied to numerically simulate the viscous flow around a ship appended with a rudder sailing along a bank. Systematical simulations are carried out for the hull-rudder system with different rudder angles at different ship-bank distances and water depths. The flow field features and the hydrodynamic forces of the hull-rudder system are obtained and analysed. This study is of significance for revealing the physical mechanism behind the bank effect and providing guidance for ship steering and control in restricted waters.


2021 ◽  
Vol 11 (24) ◽  
pp. 11670
Author(s):  
Donglai Yang ◽  
Xingrong Huang ◽  
Xiaodong Yang

Friction dampers are widely used in structural vibration suppression in various fields, such as aeronautics, astronautics, robotics, precision manufacturing, etc. Traditional friction dampers are mainly used in a passive way to optimize vibration suppression with an immutable pressure around certain excitation. In this manuscript, a hybrid control strategy by considering both the friction force in the active control law and a nonlinear velocity compensation force is put forward: First, the normal force applied on the friction damper was adjusted to ensure its vibration reduction effect under different excitation for a first passive control; second, the active control law was established by combining the dry friction force and the velocity control force in the state space; lastly, the stability of the nonlinear control law was determined by Lyapunov criterion. Numerical simulations were conducted on a three degree-of-freedom system (3-DOF) based on the proposed hybrid control strategy, to show the control efficiency in vibration suppression and economic efficiency in energy input into the system. Simulation results showed that the proposed control law could reduce the amplitude of the active control force by about 5% without degrading the control efficiency.


2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Bassam A. Albassam ◽  

This paper deals with designing a control force to create nodal point(s) having zero displacement and/or zero slope at selected locations in a vibrating beam structure excited by multiple harmonic forces. It is shown that the steady state vibrations at desired points can be eliminated using applied control forces. The control forces design method is implemented using dynamic Green’s functions that transform the equations of motion from differential to algebraic equations, in which the resulting solution is analytic and exact. The control problem is greatly simplified by utilizing the superposition principle that leads to calculating the control forces to create node(s) for each excitation frequency independently. The calculated control forces can be realized using passive elements such as masses and springs connected to the beam having reaction forces equal to the calculated control forces. The effectiveness of the proposed method is demonstrated on various cases using numerical examples. Through examples, it was shown that creating node(s) with zero deflection, as well as zero slope, not only results in isolated stationary points, but also suppresses the vibrations along a wide region of the beam.


Aerospace ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 333
Author(s):  
Weichao Chi ◽  
He Ma ◽  
Caihua Wang ◽  
Tianyu Zhao

The Stewart platform, a classical mechanism proposed as the parallel operation apparatus of robots, is widely used for vibration isolation in various fields. In this paper, a design integrating both small attitude control and vibration isolation for high-precision payloads on board satellites is proposed. Our design is based on a Stewart platform equipped with voice-coil motors (VCM) to provide control force over the mechanism. The coupling terms in the dynamic equations of the legs are removed as the total disturbance by the linear active disturbance rejection control (LADRC). Attitude maneuver and vibration isolation performance is verified by numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document