Free Vibration of Thermally Buckled Composite Sandwich Plates

2005 ◽  
Vol 128 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Le-Chung Shiau ◽  
Shih-Yao Kuo

A high precision triangular plate element is developed for the free vibration analysis of thermally buckled composite sandwich plates. Due to an uneven thermal expansion in the two principal material directions, the buckling mode of the plate may change from one pattern to another in the postbuckling region for certain fiber orientation and aspect ratio of the plate. Because of this buckle pattern change, the sequence of natural frequencies of the plate is also suddenly altered. By examining the buckling and free vibration modes of the plate, a clear picture of buckle pattern change and vibration mode shifting is presented. Numerical results show that if the shape of a free vibration mode is similar to the plate buckling mode then the natural frequency of that mode will drop to zero when the temperature reaches the buckling temperature.

2008 ◽  
Vol 82 (4) ◽  
pp. 609-621 ◽  
Author(s):  
Tongan Wang ◽  
Vladimir Sokolinsky ◽  
Shankar Rajaram ◽  
Steven R. Nutt

2018 ◽  
Vol 33 (5) ◽  
pp. 673-724 ◽  
Author(s):  
Pavan Kumar ◽  
CV Srinivasa

Many review articles were published on free vibration and buckling of laminated composites, sandwich plates, and shells. The present article reviews the literature on the buckling and free vibration analysis of shear deformable isotropic and laminated composite sandwich plates and shells using various methods available for plates in the past few decades. Various theories, finite element modeling, and experimentations have been reported for the analysis of sandwich plates and shells. Few papers on functionally graded material plates, plates with smart skin (electrorheological, magnetorheological, and piezoelectric), and also viscoelastic materials were also reviewed. The scope for future research on sandwich plates and shells was also accessed.


Sign in / Sign up

Export Citation Format

Share Document