composite sandwich
Recently Published Documents


TOTAL DOCUMENTS

1275
(FIVE YEARS 316)

H-INDEX

52
(FIVE YEARS 11)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 521
Author(s):  
Zhiwen Qin ◽  
Lili Wei ◽  
Mingming Zhang ◽  
Rui Zhang ◽  
Xiang Ji ◽  
...  

Composite sandwich structures are widely used in the fields of aviation, marine, and energy due to their high specific stiffness and design flexibility. Improving the mechanical properties of the cores is significant to the strength, modulus, and stability of composite sandwich structures. Two kinds of core machining configurations were designed by combining thin grooves, perforated holes, and thick contour cuts as well as non-machining plain cores. The cores and sandwich structures with these configurations were fabricated using a vacuum-assistant infusion process. Static tensile, compressive, shear, and peeling tests were conducted on the infused cores and sandwich structures. The results showed that the tensile, compressive, and shear moduli, and compressive strength of the infused cores can be greatly improved. The tensile strength changed negligibly due to stress concentration induced by irregular foam cell and the shear-lag phenomenon of the resin column/foam interface. The shear strength of the infused cores increased slightly. The thick contour cuts and perforated holes can greatly improve the face sheet/core peel capacity of the sandwich structures, whereas the thin grooves can moderately improve the peel capacity. Both infused cores with the designed machining configurations exhibited positive effects on the compressive, tensile, and shear moduli, and compressive strength, considering the material costs. The study provides a comprehensive and quantitative insight into the effects of core machining configurations on mechanical properties of infused cores and composite sandwich structures.


2022 ◽  
pp. 089270572110466
Author(s):  
Himan Khaledi ◽  
Yasser Rostamiyan

Present paper has experimentally and numerically investigated the mechanical behavior of composite sandwich panel with novel M-shaped lattice core subjected to three-point bending and compressive loads. For this purpose, a composite sandwich panel with M-shaped core made of carbon fiber has been fabricated in this experiment. In order to fabricate the sandwich panels, the vacuum assisted resin transfer molding (VARTM) has been used to achieve a laminate without any fault. Afterward, polyurethane foam with density of 80 kg/m3 has been injected into the core of the sandwich panel. Then, a unique design was presented to sandwich panel cores. The study of force-displacement curves obtained from sandwich panel compression and three-point bending tests, showed that an optimum mechanical strength with a considerable lightweight. It should be noted that the experimental data was compared to numerical simulation in ABAQUS software. According to the results, polyurethane foam has improved the flexural strength of sandwich panels by 14% while this improvement for compressive strength is equal to 23%. As well as, it turned out that numerical results are in good agreement with experimental ones and make it possible to use simulation instead of time-consuming experimental procedures for design and analysis.


2022 ◽  
Vol 58 (4) ◽  
pp. 147-157
Author(s):  
Elena-Felicia Beznea ◽  
Nicusor Baroiu ◽  
Ionel Chirica

A study on the static analysis of a naval panel made of composite sandwich materials is presented. By using FEM, the modeling of a naval floor with a length of 5 m and a width of 2.5 m is performed. Two distinct cases, have been performed: the first model consists of the plate and stiffeners made of steel and the second model concerns a panel made of composite material sandwich type steel / SANFoam103 / steel, and the stiffeners made of steel. A parametric study has been performed. The thickness of the steel faces have 6 mm, and for the core of SANFoam have been selected the thicknesses 5 mm, 10 mm, 20 mm, 40 mm.


2022 ◽  
Vol 251 ◽  
pp. 113529
Author(s):  
Christoph de Sousa ◽  
Joaquim A.O. Barros ◽  
João R. Correia

Sign in / Sign up

Export Citation Format

Share Document