The DRESOR Method for a Collimated Irradiation on an Isotropically Scattering Layer

2006 ◽  
Vol 129 (5) ◽  
pp. 634-645 ◽  
Author(s):  
Qiang Cheng ◽  
Huai-Chun Zhou

Forward and backward Monte Carlo methods may become inefficient when the radiant source is collimated and radiation onto a small, arbitrary spot and onto a small, arbitrary direction cone is desired. In this paper, the DRESOR method was formulated to study the radiative heat transfer process in an isotropically scattering layer exposed to collimated radiation. As the whole spherical solid angle space was uniformly divided into 13,316 discrete solid angles, the intensity at some point in up to such discrete directions was given. The radiation fluxes incident on a detector inside the layer for varying acceptance angles by a step of 2deg were also measured, which agreed well with those in literature. The radiation flux across the top and the bottom boundaries were also provided.

2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Tao Ren ◽  
Michael F. Modest

With today's computational capabilities, it has become possible to conduct line-by-line (LBL) accurate radiative heat transfer calculations in spectrally highly nongray combustion systems using the Monte Carlo method. In these calculations, wavenumbers carried by photon bundles must be determined in a statistically meaningful way. The wavenumbers for the emitting photons are found from a database, which tabulates wavenumber–random number relations for each species. In order to cover most conditions found in industrial practices, a database tabulating these relations for CO2, H2O, CO, CH4, C2H4, and soot is constructed to determine emission wavenumbers and absorption coefficients for mixtures at temperatures up to 3000 K and total pressures up to 80 bar. The accuracy of the database is tested by reconstructing absorption coefficient spectra from the tabulated database. One-dimensional test cases are used to validate the database against analytical LBL solutions. Sample calculations are also conducted for a luminous flame and a gas turbine combustion burner. The database is available from the author's website upon request.


Sign in / Sign up

Export Citation Format

Share Document