radiation flux
Recently Published Documents


TOTAL DOCUMENTS

353
(FIVE YEARS 56)

H-INDEX

23
(FIVE YEARS 1)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 125
Author(s):  
Mikhail A. Kotov ◽  
Andrey N. Shemyakin ◽  
Nikolay G. Solovyov ◽  
Mikhail Y. Yakimov

The study focused on increasing the efficiency of germicidal UV radiation by using highly diffuse reflective materials such as PTFE in irradiated cavities of UV air purifiers. In a conventional cylindrically symmetric cavity with a linear amalgam mercury lamp as UV-radiation source on the axis UV-radiation, flux directed from the lamp to the walls dropped from the axis to the periphery. To increase the UV irradiation, the walls are often made mirror-reflective, but the radiation flux distribution remained radially symmetric with a maximum on the source emitting surface in this case as well. When most of the emitted light is returned to the source after one reflection, the conditions of its operation are disturbed. If the walls are made of highly diffuse reflective materials, the radiation flux density inside the cavity increases on average, and its distribution becomes uniform and highly symmetric. Thus, the effect of amplification of the radiation flux due to the highly diffuse reflectivity of the walls increases with radius and reaches a maximum at the wall. Experiments were performed to demonstrate increasing amplification of germicidal UV radiation flux with a diffuse reflection coefficient in cylindrical cavities with walls of PTFE and ePTFE. The irradiation of the cavity wall was observed to increase up to 20 times at the resonant mercury line of 253.7 nm and up to 40 times at some non-resonant lines of the visible range due to highly diffuse reflectivity of the cavity walls. The flux amplification effect was limited by the diffuse reflectivity value of the walls and absorption coefficient of the radiation emitting surface. A formula for calculating the radiation flux amplification factor in a diffusely reflecting cylindrically symmetric cavity was derived for the case of Lambertian source and reflector, including wall reflectivity and source surface absorption coefficients. The effects of heating and cooling of the mercury lamp amalgam directly affected the amplification, and symmetrization of germicidal irradiation was observed and is discussed in the paper. Numerical calculations were performed by the ray tracing method. The calculated model was verified by comparing the numerical results with those of both the approximate theoretical consideration and experiments. The promising use of diffusely reflecting cylindrical cavities for UV air purifiers is discussed. Designs of air inlet and outlet ports that allow effective locking of germicidal radiation inside the UV air purifiers were considered. The results of this work may be of interest for further developments in the UV disinfection technique.



Author(s):  
Chai Boyu ◽  
Feng Xu ◽  
Jianjun Xu ◽  
Han Li-guo ◽  
CHEN Si-qi ◽  
...  

Abstract Based on various statistical methods and empirical orthogonal function (EOF) analysis, this study analyzes the correlation of radiation flux of Northwest Pacific in the 100 years scale with the western Pacific warm pool and typhoon development. The key results are as follows. First, the surface downwelling longwave radiation (SDLR) received by key areas in Northwest Pacific significantly increased over the past 170 years. The surface downwelling shortwave radiation (SDSR) decreased, and TOA (Top of Atmosphere) incident shortwave radiation (TISR) slightly fluctuated and increased in the 11a (11 years) period. Second, there was the strongest correlation between the Western Pacific warm pool and SDLR, and both increased continuously. Third, since 1945, there has been a tendency of increasing after decreasing in the annual frequency and the share of severe typhoons, and the formation area distribution of typhoons has turned more even. Taking 1998 as a cut-off point, before 1998, there was no obvious correlation between the strong typhoon frequency and SDLR. However, such correction became stronger after 1998. They were affected by the changes of SDLR, SDSR, TISR, vapor, vorticity, vertical velocity, SST and h100 . Forth, the SDLR and TISR are major factors influencing the Western Pacific warm pool, typhoon motion and other varieties. While SDLR mainly increases in the tropical areas, TISR tends to fluctuate and increase slightly. Their changes are consistent with the change general characteristics of strengthening of typhoon.



Author(s):  
V. M. Lisitsyn ◽  
L. A. Lisitsyna ◽  
A. V. Ermolaev ◽  
D. A. Musakhanov ◽  
M. G. Golkovskii


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Andrea Addazi ◽  
Kaiqiang Alan Zeng

Abstract We derive a universal expression for the gravitational radiation energy spectrum dEGW/dω at sub-leading order emitted from a generic gravitational hard scattering of multi-particles or multi-bodies. Our result includes all $$ \mathcal{O} $$ O (ω) corrections to the gravitational radiation flux from a generic 2 → N collision, in both the cases of massless and massive particles/bodies. We also show the dependence of the radiation energy flux by the quantum spin in case of particle collisions. Then, we consider the specific case of a gravitational elastic scattering of two massive bodies, i.e. m + M → m + M with m, M the masses of the two bodies respectively. We demonstrate that in this case all $$ \mathcal{O} $$ O (ω) contributions to the energy flux exactly cancel each others. Nevertheless, we also show that, for a 2 → 2 inelastic scattering, the inclusion of sub-leading soft gravitons leads to a not zero radiation flux, having a simple expression in certain asymptotic regimes. Our results can be applied to the case of Black Hole collisions with possible testable implications in gravitational waves physics.



2021 ◽  
Vol 12 (3) ◽  
pp. 239-248
Author(s):  
R. V. Lukashevich ◽  
G. A. Fokov

Inorganic scintillation detectors are widely used to measure of dose rate in the environment due to their high sensitivity to photon radiation. A distinctive feature when using such detectors is the need to take into account of the position of the effective energy release center. This peculiarity is actual when using measuring instruments with inorganic scintillation detectors as working standards during calibration at short “source–detector” distances in conditions of low-background shield or using a facility with protection from external gamma radiation background in the dose rate range from 0.03 to 0.3 μSv/h (μGy/h). The purpose of this work was to calculate the position of the effective energy release center of NaI(Tl) scintillation detectors and to take it into account when working at short “source–detector” distances.An original method of determining the position of the effective energy release center when irradiating the side and end surfaces of inorganic scintillation detector with parallel gamma radiation flux and point gamma radiation sources at small “source–detector” distances using Monte Carlo methods is proposed. The results of calculations of the position of the effective energy release center of NaI(Tl) based detectors of “popular” sizes for the cases of parallel gamma radiation flux and point sources of gamma radiation at small “source–detector” distances are presented. The functional dependences of the position of the effective energy release center of NaI(Tl) based detectors on the distance to the point gamma radiation sources and the energy of gamma radiation sources are presented.As a result of the study it was found that for scintillation NaI(Tl) detectors of medium size (for example, Ø25×40 mm or Ø40×40 mm) the point gamma radiation source located at a distance of 1 m or more, creates a radiation field which does not differ in characteristics from the radiation field created by a parallel flux of gamma radiation. It is shown that approaching the point gamma radiation source to the surface of scintillation detector leads to displacement of the position of the effective energy release center to the surface of the detector.



ANRI ◽  
2021 ◽  
Vol 0 (3) ◽  
pp. 16-26
Author(s):  
Mariya Pyshkina ◽  
Aleksey Vasil'ev ◽  
Aleksey Ekidin ◽  
Evgeniy Nazarov ◽  
Anton Pudovkin ◽  
...  

Studies of the energy distribution of neutron radiation at the workplaces of the Beloyarsk NPP were carried out. At 1 and 2 power units, occupational exposure of neutron irradiation occurs during operations for loading spent nuclear fuel into special railway carriage. At power units 3 and 4, operations accompanied by neutron irradiation can be divided into 3 groups: (1) work in rooms adjacent to the reactor core; (2) manipulation of radioisotope neutron sources; (3) work with fresh and spent nuclear fuel. Based on the data obtained on the energy distribution of the neutron radiation flux density, the ‘true’ values of the ambient dose equivalent rate H*(10), the individual dose equivalent rate Hp(10) and the integral neutron radiation flux density at individual workplaces were determined. For each group of workplaces, Fluence-toambient dose equivalent conversion coefficients are determined, which lie in the range from 12 to 295 pSv⋅cm2. Correction factors for individual thermoluminescent dosimeters, taking into.



Author(s):  
Andrey V. Arzhannikov ◽  
Petr V. Kalinin ◽  
Sergey A. Kuznetsov ◽  
Konstantin N. Kuklin ◽  
Maksim A. Makarov ◽  
...  


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1088
Author(s):  
Min-Seong Kim ◽  
Byung Hyuk Kwon ◽  
Tae-Young Goo

The Structure des Echanges Mer-Atmosphère, Propriétés Océaniques/ Recherche Expérimentale (SEMAPHORE) experiment was conducted over the oceanic Azores current located in the Azores Basin. The evolution of the marine atmospheric boundary layer (MABL) was studied based on the evaluation of mean and turbulent data using in situ measurements by a ship and two aircrafts. The sea surface temperature (SST) field was characterized by a gradient of approximately 1 °C/100 km. The SST measured by aircraft decreased at a ratio of 0.25 °C/100 m of altitude due to the divergence of the infrared radiation flux from the surface. With the exception of temperature, the mean parameters measured by the two aircrafts were in good agreement with each other. The sensible heat flux was more dispersed than the latent heat flux according to the comparisons between aircraft and aircraft, and aircraft and ship. This study demonstrates the feasibility of using two aircraft to describe the MABL and surface flux with confidence.





Sign in / Sign up

Export Citation Format

Share Document