Optimum Battery Size for Fuel Cell Hybrid Electric Vehicle— Part I

2006 ◽  
Vol 4 (2) ◽  
pp. 167-175 ◽  
Author(s):  
Olle Sundström ◽  
Anna Stefanopoulou

This study explores different hybridization levels of a midsized vehicle powered by a polymer electrolyte membrane fuel cell stack. The energy buffer considered is a lead-acid-type battery. The effects of the battery size on the overall energy losses for different drive cycles are determined when dynamic programming determines the optimal current drawn from the fuel cell system. The different hybridization levels are explored for two cases: (i) when the battery is only used to decouple the fuel cell system from the voltage and current demands from the traction motor to allow the fuel cell system to operate as close to optimally as possible and (ii) when regenerative braking is included in the vehicle with different efficiencies. The optimal power-split policies are analyzed to quantify all the energy losses and their paths in an effort to clarify the hybridization needs for a fuel cell vehicle. Results show that without any regenerative braking, hybridization will not decrease fuel consumption unless the vehicle is driving in a mild drive cycle (city drive with low speeds). However, when the efficiency of the regenerative braking increases, the fuel consumption (total energy losses) can be significantly lowered by choosing an optimal battery size.

2006 ◽  
Vol 4 (2) ◽  
pp. 176-184 ◽  
Author(s):  
Olle Sundström ◽  
Anna Stefanopoulou

This study presents a simplified model of a midsized vehicle powered by a polymer electrolyte membrane fuel cell stack together with a lead-acid battery as an energy buffer. The model is used with dynamic programming in order to find the optimal coordination of the two power sources while penalizing transient excursions in oxygen concentration in the fuel cell and the state of charge in the battery. The effects of the battery size on the overall energy losses for different drive cycles are determined, and the optimal power split policies are analyzed to quantify all the energy losses and their paths in an effort to clarify the hybridization needs for a fuel cell vehicle with constraints on dynamically varying variables. Finally, a causal nonpredictive controller is presented. The battery sizing results from the dynamic programming optimizations and the causal controller are compared.


2021 ◽  
Vol 163 ◽  
pp. 113550 ◽  
Author(s):  
E. Tsalapati ◽  
C.W.D. Johnson ◽  
T.W. Jackson ◽  
L. Jackson ◽  
D. Low ◽  
...  

2020 ◽  
Vol MA2020-02 (34) ◽  
pp. 2183-2183
Author(s):  
Chunmei Wang ◽  
Mark Ricketts ◽  
Amir Peyman Soleymani ◽  
Jasna Jankovic ◽  
James Waldecker

2008 ◽  
Vol 185 (1) ◽  
pp. 171-178 ◽  
Author(s):  
In-Hyuk Son ◽  
Woo-Cheol Shin ◽  
Yong-Kul Lee ◽  
Sung-Chul Lee ◽  
Jin-Gu Ahn ◽  
...  

2003 ◽  
Vol 122 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Klaus Tüber ◽  
Marco Zobel ◽  
Heribert Schmidt ◽  
Christopher Hebling

Sign in / Sign up

Export Citation Format

Share Document