Heat Transfer in a High-Temperature Packed Bed Thermal Energy Storage System—Roles of Radiation and Intraparticle Conduction

1996 ◽  
Vol 118 (1) ◽  
pp. 50-57 ◽  
Author(s):  
A. A. Jalalzadeh-Azar ◽  
W. G. Steele ◽  
G. A. Adebiyi

A model is developed and experimentally verified to study the heat transfer in a high-temperature packed bed thermal energy storage system utilizing zirconium oxide pellets. The packed bed receives flue gas at elevated temperatures varying with time during the storage process and utilizes air for the recovery process. Both convection and radiation are included in the model of the total heat transfer between the gas and the pellets. It is found that thermal radiation and intraparticle conduction do not play a major role in the overall heat transfer in the packed bed under the specified operating conditions. An uncertainty analysis is performed to investigate the propagation of the uncertainties in the variables to the overall uncertainty in the model predictions and the experimental results.

Author(s):  
Rozina N. Nalbandian ◽  
Karen U. Girgis ◽  
Benjamin T. Kong ◽  
Ulyses Aguirre ◽  
Adrian Gil C. Victorio ◽  
...  

Abstract In this paper, Computational Fluid Dynamics (CFD) is employed to investigate the heat transfer characteristics of Reverse Osmosis Concentrate (ROC) as an alternative, low-cost thermal energy storage medium. Thermal energy storage is a critical component for increasing efficiency and dispatchability of solar thermal and combined heat and power plants. The byproduct of water desalination, ROC, is classified as an industrial waste by the U.S. Environmental Protection Agency as it has negative effects on vegetation and sea-life. Currently, ROC disposal includes deep-well injection, surface discharge to rivers, discharge to the ocean, and evaporation ponds. The composition and thermal properties of ROC salt vary depending on the original source of feedwater. Transient models are utilized to understand the heat transfer between the heat transfer fluid and storage fluid (i.e., ROC) over time. This simulation also provides valuable information in determining the optimal operating conditions of the thermal energy storage system. This information will be used in conjunction with a cost analysis, focused on the transportation, processing and containment cost of the energy storage, that aims to determine the economic feasibility of ROC technology in large scale, commercial applications.


2020 ◽  
Vol 12 (4) ◽  
pp. 168781402090574
Author(s):  
Ahlem Bouguila ◽  
Rachid Said

Thermal energy storage has been considered as an important solution to extend the operation of a concentrated solar power plant by meeting the peak demand of power in the time period from sunset to night, or providing power during cloudy days. Discussed in this work is a thermocline thermal energy storage system with a solid filler material. For this reason, a one-dimensional single-phase model is developed and validated with experimental data to investigate the thermal behavior of such thermal energy storage. The described model is further applied to design a 100-kWhth thermocline thermal energy storage system with a packed bed of quartzite rocks and oil as the heat transfer fluid. A synthetic oil (Therminol VP-1) and a vegetable oil (rapeseed oil) are the two candidates to be used as the heat transfer fluid. Their thermal and economic performances are calculated and compared. The results show that rapeseed oil is more cost-effective than Therminol VP-1 offering a lower energy cost (€18.3/kWhth vs €92.925/kWhth for Therminol VP-1).


Sign in / Sign up

Export Citation Format

Share Document