Non-Darcian Boundary Layer Flow and Forced Convective Heat Transfer Over a Flat Plate in a Fluid-Saturated Porous Medium

1990 ◽  
Vol 112 (1) ◽  
pp. 157-162 ◽  
Author(s):  
A. Nakayama ◽  
T. Kokudai ◽  
H. Koyama

The local similarity solution procedure was successfully adopted to investigate non-Darcian flow and heat transfer through a boundary layer developed over a horizontal flat plate in a highly porous medium. The full boundary layer equations, which consider the effects of convective inertia, solid boundary, and porous inertia in addition to the Darcy flow resistance, were solved using novel transformed variables deduced from a scale analysis. The results from this local similarity solution are found to be in good agreement with those obtained from a finite difference method. The effects of the convective inertia term, boundary viscous term, and porous inertia term on the velocity and temperature fields were examined in detail. Furthermore, useful asymptotic expressions for the local Nusselt number were derived in consideration of possible physical limiting conditions.

2021 ◽  
Vol 8 (65) ◽  
pp. 15142-15146
Author(s):  
Ram Naresh Singh

In this paper we study a problem of the boundary layer flow through a porous media in the presence of heat transfer. Here we consider high porosity bounded by a semi-infinite horizontal plate. The main aim of this study is to point out local similarity transformations for the boundary layer flow, through a homogeneous porous medium. Here we applying finite difference schemes to find out the numerical solutions of the problem. The free stream velocity and the temperature far away from the plate are exponential function of variables.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Norfifah Bachok ◽  
Anuar Ishak ◽  
Ioan Pop

An analysis is performed to study the heat transfer characteristics of steady mixed convection flow over a permeable vertical flat plate embedded in an anisotropic fluid-saturated porous medium. The effects of uniform suction and injection on the flow field and heat transfer characteristics are numerically studied by employing an implicit finite difference Keller-box method. It is found that dual solutions exist for both assisting and opposing flows. The results indicate that suction delays the boundary layer separation, while injection accelerates it.


2011 ◽  
Vol 27 (1) ◽  
pp. 63-69 ◽  
Author(s):  
P.-Y. Tsai ◽  
C.-K. Chen

ABSTRACTIn this paper, a new algorithm is proposed to solve the velocity and temperature fields in the thermal boundary layer flow over a semi-infinite flat plate. Both the flow and heat transfer solutions are calculated accurately by the Laplace Adomian decomposition method, Padé approximant and the optimal design concept. The Laplace Adomian decomposition method (LADM) is a combination of the numerical Laplace transform algorithm with the Adomian decomposition method (ADM). A hybrid method of the LADM combined with the Padé approximant, named the LADM-Padé approximant technique, is introduced to solve the thermal boundary layer problems directly without any small parameter assumptions, linearizatons or transformations of the boundary value problems to a pair of initial value problems. The LADM-Padé approximant solutions here in are given to show the accuracy in comparison with different method solutions.


1987 ◽  
Vol 109 (1) ◽  
pp. 125-130 ◽  
Author(s):  
A. Nakayama ◽  
H. Koyama

The problem of free convective heat transfer from a nonisothermal two-dimensional or axisymmetric body of arbitrary geometric configuration in a fliud-saturated porous medium was analyzed on the basis of boundary layer approximations. Upon introducing a similarity variable (which also accounts for a possible wall temperature effect on the boundary layer length scale), the governing equations for a nonisothermal body of arbitrary shape can be reduced to an ordinary differential equation which has been previously solved by Cheng and Minkowycz for a vertical flat plate with its wall temperature varying in an exponential manner. Thus, it is found that any two-dimensional or axisymmetric body possesses a corresponding class of surface wall temperature distributions which permit similarity solutions. Furthermore, a more straightforward and yet sufficiently accurate approximate method based on the Ka´rma´n-Pohlhausen integral relation is suggested for a general solution procedure for a Darcian fluid flow over a nonisothermal body of arbitrary shape. For illustrative purposes, computations were carried out on a vertical flat plate, horizontal ellipses, and ellipsoids with different minor-to-major axis ratios.


1997 ◽  
Vol 119 (1) ◽  
pp. 89-96 ◽  
Author(s):  
A. J. Chamkha

Natural convection flow of an absorbing fluid up a uniform porous medium supported by a semi-infinite, ideally transparent, vertical flat plate due to solar radiation is considered. Boundary-layer equations are derived using the usual Boussinesq approximation and accounting for applied incident radiation flux. A convection type boundary condition is used at the plate surface. These equations exhibit no similarity solution. However, the local similarity method is employed for the solution of the present problem so as to allow comparisons with previously published work. The resulting approximate nonlinear ordinary differential equations are solved numerically by a standard implicit iterative finite-difference method. Graphical results for the velocity and temperature fields as well as the boundary friction and Nusselt number are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document