A Numerical Solution for Gas-Particle Flows at High Reynolds Numbers

1981 ◽  
Vol 48 (3) ◽  
pp. 465-471 ◽  
Author(s):  
J. A. Laitone

Predicting the fluid mechanical characteristics of a gas-solid two-phase flow is critical for the successful design and operation of coal gasification systems, coal fired turbines, rocket nozzles, and other energy conversion systems. This work presents a general grid-free numerical solution which extends a numerical solution of the Navier-Stokes equations developed by Chorin to a solution suitable for unsteady or steady dilute gas-solid particle flows. The method is applicable to open or closed domains of arbitrary geometry. The capability of the method is illustrated by analyzing the flow of gas and particles about a cylinder. Good agreement is found between the numerical method and experiment.

2000 ◽  
Author(s):  
Eivind Helland ◽  
Rene Occelli ◽  
Lounes Tadrist

Abstract Simulations of 2D gas-particle flows in a vertical riser using a mixed Eulerian-Lagrangian approach are addressed. The model for the interstitial gas phase is based on the Navier-Stokes equations for two-phase flow with a coupling term between the gas and solid phases due to drag forces. The motion of particles is treated by a Lagrangian approach and the particles are assumed to interact through binary, instantaneous, non-frontal, inelastic collisions with friction. In this paper different particle clustering effects in the gas-particle flow is investigated.


Author(s):  
Ajay K. Agrawal ◽  
Tah-Teh Yang

A computational procedure based on the solution of fully elliptic Navier-Stokes equations on a body-fitted non-orthogonal grid was used to obtain flow fields in annular diffusers with a suction slot at the inner and outer walls. The turbulence effects were simulated by high Reynolds number form of the k-ε model. The calculation method was used to modify an industrial gas turbine (GE MS · 7001F) compressor/combustor annular diffuser to allow extraction of compressed airflow for coal gasification in simplified IGCC Systems. The air for gasification was extracted through a suction slot on the outer wall of the diffuser which was curved to improve the overall performance and to avoid flow separation; both of these insured by providing accelerated flow through the suction slot and nearly constant wall pressure downstream of the slot. Suction slot and outer wall geometries to result in the above conditions were determined by a trial and error procedure. The diffuser’s performance was further improved by extracting 6% of the compressed air through a slot at the inner wall, kept straight due to structural constraints. The resulting diffuser arrangement was relatively insensitive to the upstream disturbances.


AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 1603-1614
Author(s):  
Martin Scholtysik ◽  
Bernhard Mueller ◽  
Torstein K. Fannelop

Sign in / Sign up

Export Citation Format

Share Document