successful design
Recently Published Documents


TOTAL DOCUMENTS

479
(FIVE YEARS 150)

H-INDEX

25
(FIVE YEARS 5)

Textiles ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 50-80
Author(s):  
Yusuke Yamada

Deciphering how the dielectric properties of textile materials are orchestrated by their internal components has far-reaching implications. For the development of textile-based electronics, which have gained ever-increasing attention for their uniquely combined features of electronics and traditional fabrics, both performance and form factor are critically dependent on the dielectric properties. The knowledge of the dielectric properties of textile materials is thus crucial in successful design and operation of textile-based electronics. While the dielectric properties of textile materials could be estimated to some extent from the compositional profiles, recent studies have identified various additional factors that have also substantial influence. From the viewpoint of materials characterization, such dependence of the dielectric properties of textile materials have given rise to a new possibility—information on various internal components could be, upon successful correlation, extracted by measuring the dielectric properties. In view of these considerable implications, this invited review paper summarizes various fundamental theories and principles related to the dielectric properties of textile materials. In order to provide an imperative basis for uncovering various factors that intricately influence the dielectric properties of textile materials, the foundations of the dielectrics and polarization mechanisms are first recapitulated, followed by an overview on the concept of homogenization and the dielectric mixture theory. The principal advantages, challenges and opportunities in the analytical approximations of the dielectric properties of textile materials are then discussed based on the findings from the recent literature, and finally a variety of characterization methods suitable for measuring the dielectric properties of textile materials are described. It is among the objectives of this paper to build a practical signpost for scientists and engineers in this rapidly evolving, cross-disciplinary field.


Tungsten ◽  
2022 ◽  
Author(s):  
Jacob A. R. Wright

AbstractTungsten will be used as the plasma-facing divertor material in the International Thermonuclear Experimental Reactor (ITER) fusion reactor. Under high temperatures and high ion fluxes, a ‘fuzz’ nanostructure forms on the tungsten surface with dramatically different properties and could contaminate the plasma. Although simulations and experimental observations have provided understanding of the initial fuzz formation process, there is debate over whether tungsten or helium migration is rate-limiting during late-stage growth, and the mechanisms by which tungsten and helium migrations occur. Here, the proposed mechanisms are considered in turn. It is concluded that tungsten migration occurs by adatom diffusion along the fuzz surface. Continual helium migration through the porous fuzz to the tungsten bulk is also required for fuzz growth, for continued bubble growth and rupture. Helium likely migrates due to ballistic penetration, although diffusion may contribute. It is difficult to determine the limiting process, which may switch from helium penetration to tungsten adatom diffusion above a threshold flux. Areas for further research to clarify the mechanisms are then considered. A greater understanding of the fuzz formation mechanism is key to the successful design of plasma-facing tungsten components, and may have applications in forming porous tungsten catalysts.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 101
Author(s):  
Fu-Ming Tzu ◽  
Shih-Hsien Hsu ◽  
Jung-Shun Chen

This paper describes the non-contact optical detection of debris material that adheres to the substrates of color filters (CFs) and thin-film transistors (TFTs) by area charge-coupled devices (CCDs) and laser sensors. One of the optical detections is a side-view illumination by an area CCD that emits a coherency light to detect debris on the CF. In contrast to the height of the debris material, the image is acquired by transforming the geometric shape from a square to a circle. As a result, the side-view illumination from the area CCD identified the height of the debris adhered to the black matrix (BM) as well as the red, green, and blue of a CF with 95, 97, 98, and 99% accuracy compared to the golden sample. The uncertainty analysis was at 5% for the BM, 3% for the red, 2% for the green, and 1% for the blue. The other optical detection, a laser optical interception with a horizontal alignment, inspected the material foreign to the TFT. At the same time, laser sensors intercepted the debris on the TFT at a voltage of 3.5 V, which the five sets of laser optics make scanning the sample. Consequently, the scanning rate reached over 98% accuracy, and the uncertainty analysis was within 5%. Thus, both non-contact optical methods can detect debris at a 50 μm height or lower. The experiment presents a successful design for the efficient prevention of a valuable component malfunction.


2021 ◽  
Vol 24 (2) ◽  
pp. 123-129
Author(s):  
Kamal Ahmed Rashed ◽  
Nihad Bahaaldeen Salih ◽  
Tavga Aram Abdalla

Soil’s characteristics are essential for the successful design of projects such as airports runway and flexible pavement. CBR (California Bering Ratio) is one of the significant soil characteristics for highways and airports projects. Thus, the CBR property can be used to determine the subgrade reaction of soil through correlations. Many of the soil geotechnical parameters such as compaction characteristics (Maximum Dry Density, MDD; Optimum Moisture Content, OMC), and consistency parameters (Liquid Limit, LL; Plastic Limit, PL; Plasticity Index, PI) can be in charge of changes that happen in soil CBR value. Soaked and/or non-soaked conditions of soils also affect CBR value. Hence, testing soils in a laboratory for CBR calculation is time-consuming that needs notable effort. Therefore, this study aims to generate some useful correlations for soil’s CBR with compaction and consistency parameters for 85 samples of fine-grained soils. The study trials were applied on natural soil samples of various places in Sulaimani Governorate, Northern Iraq. Statistical analysis has been carried out by using SPSS software (Version 28). Soaked CBR is counted, which is important for conditions such as rural roads that remain prone to water for few days. Based on the statistical analysis, there is a significant correlation between LL, PL, PI, MDD, and OMC with CBR as the dependent variable as a single variable equation with R2 of  0.7673, 0.5423, 0.5192, 0.6489, and 0.51, respectively. In addition, the highest value of R2 correlation was obtained between CBR value with consistency and compaction properties as a multiple regression equation with R2 of 0.82. The obtained equations for correlation purposes are successfully achieved and can be used, notably, to estimate CBR value.


Author(s):  
Volodimir Mikolayovich Grischenko ◽  
Kateryna Serhiivna Leonova

The main task of mechanical engineering is to organize the production of a range of machines to meet the needs of all industries. These are power, transport, lifting and transport units, agricultural machinery, construction industry, etc. Among them, one can single out devices in which the relative movement of their parts is assigned, that is, kinematic pairs are included in the calculation models. The real operating conditions of machines are varied, but most often they are associated with periodic starts-stops, which determines the relevance of the study of unsteady modes. The analysis of the operation of such models becomes more complicated. For successful design results, mathematical modeling of individual processes in mechanisms is carried out. One of the first calculations is dynamic. Modern, available CAD / CAE systems for modeling and analysis provide automation capabilities, building more realistic design models. The paper discusses the approbation of the use of CAD for modeling the dynamics of a jib crane with a set of four units: platform, boom, sleeve and rod. The developed model is combined: the platform and the sleeve correspond to the kinetostatic model, and the boom and rod are elastic. The crane is designed to perform lifting operations in a vertical plane, with the possibility of relative movement in 3 rotational and one translational kinematic pairs. The performed calculations of the static, modal and dynamic analyzes of the links of the mechanism confirm the adequacy of their models. Among them is the task of instantaneous load application, which is typical for the "lifting and picking" operating mode of crane lifting mechanisms. The deformation of the entire structure in one of the boom positions is also considered. The determination of the reaction forces in the hydraulic cylinder provides important information for the selection of the power unit.


2021 ◽  
Author(s):  
Trina Adhikary ◽  
Durga Hemanth Kumar

The production of vegetables and fruits is at a high rate but the major challenging task is the postharvest handling and processing of the products. Approximately 20–30% of the production is being wasted due to a lack of proper postharvest management. Many developments were made to reduce this wastage such as cold chain development, different storage structures, some drying methodologies to promote the shelf life of produce. But all these systems need to be improved and utilized commercially. The losses still occur due to a lack of sound knowledge on the chemical nature of products and different management techniques (e.g., drying, cooling, blanching). Therefore, the successful design of the cooling, packing, storage transport, and drying processes of fresh food requires linking materials sciences, fluid dynamics, mechanical deformation, food chemistry, and process control.


Author(s):  
S J Kim ◽  
J M Sohn ◽  
J K Paik

Hydrocarbon explosion and fire are typical accidents in the offshore oil and gas industry, sometimes with catastrophic consequences such as casualties, property damage and pollution. Successful engineering and design should meet both functional requirements associated with operability in normal conditions and health, safety, environmental and ergonomics (HSE&E) requirements associated with accidental and extreme conditions. A risk-based approach is best for successful design and engineering to meet HSE&E requirements. This study aimed to develop an advanced procedure for assessing the quantitative risk of offshore installations in explosions. Unlike existing industry practices based on prescriptive rules or qualitative approaches, the proposed procedure uses an entirely probabilistic approach. The procedure starts with probabilistic selection of accident scenarios. As the defining components of risk, both the frequency and consequences associated with selected accident scenarios are computed using the most refined technologies. Probabilistic technology is then applied to establish the relationship between the probability of exceedance and the physical values of the accident. Acceptance risk criteria can be applied to define the nominal values of design and/or level of risk. To validate and demonstrate the applicability of the proposed procedure, an example of its application to topside structures of an FPSO unit subjected to hydrocarbon explosions is detailed. The conclusions and insights obtained are documented.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
B. Geerling ◽  
S. M. Kelders ◽  
R. W. Kupka ◽  
A. W. M. M. Stevens ◽  
E. T. Bohlmeijer

Abstract Background The Life-Chart Method (LCM) is an effective self-management treatment option in bipolar disorder (BD). There is insufficient knowledge about the consumers’ needs and desires for an e-monitoring solution. The first step towards a new mood monitoring application is an extended inventory among consumers and professionals. Methods The aim of the current study was: to identify opinions about online mood monitoring of patients with BD and professionals and to identify preferences on design, technical features and options facilitating optimal use and implementation of online mood monitoring. This study used a qualitative design with focus-groups. Participants were recruited among patients and care providers. Three focus-groups were held with eight consumers and five professionals. Results The focus-group meetings reveal a shared consciousness of the importance of using the Life-Chart Method for online mood monitoring. There is a need for personalization, adjustability, a strict privacy concept, an adjustable graphic report, and a link to early intervention strategies in the design. Due to the fact that this is a qualitative study with a relative small number of participants, so it remains unclear whether the results are fully generalizable. We can’t rule out a selection bias. Conclusions This study demonstrates the importance of involving stakeholders in identifying a smartphone-based mood charting applications’ requirements. Personalization, adjustability, privacy, an adjustable graphic report, and a direct link to early intervention strategies are necessary requirements for a successful design. The results of this value specification are included in the follow-up of this project.


2021 ◽  
Author(s):  
Alison C Leonard ◽  
Jonathan Weinstein ◽  
Paul J Steiner ◽  
Annette Erbse ◽  
Sarel J Fleishman ◽  
...  

Stabilizing antigenic proteins as vaccine immunogens or diagnostic reagents is a stringent case of protein engineering and design as the exterior surface must maintain recognition by receptor(s) and antigen specific antibodies at multiple distinct epitopes. This is a challenge, as stability-enhancing mutations must be focused on the protein core, whereas successful computational stabilization algorithms typically select mutations at solvent-facing positions. In this study we report the stabilization of SARS-CoV-2 Wuhan Hu-1 Spike receptor binding domain (S RBD) using a combination of deep mutational scanning and computational design, including the FuncLib algorithm. Our most successful design encodes I358F, Y365W, T430I, and I513L RBD mutations, maintains recognition by the receptor ACE2 and a panel of different anti-RBD monoclonal antibodies, is between 1-2°C more thermally stable than the original RBD using a thermal shift assay, and is less proteolytically sensitive to chymotrypsin and thermolysin than the original RBD. Our approach could be applied to the computational stabilization of a wide range of proteins without requiring detailed knowledge of active sites or binding epitopes, particularly powerful for cases when there are multiple or unknown binding sites.


Sign in / Sign up

Export Citation Format

Share Document